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On locally AH algebras

Huaxin Lin

Abstract

We show that every unital amenable separable simple C*-algebra with finite tracial rank
which satisfies the UCT has in fact tracial rank at most one. We also show that unital
separable simple C*-algebras which are “tracially” locally AH with slow dimension growth
are Z-stable. As a consequence, unital separable simple C*-algebras which are locally AH
with no dimension growth are isomorphic to a unital simple AH-algebra with no dimension
growth.

1 Introduction

The program of classification of amenable C*-algebras, or the Elliott program, is to classify
amenable C*-algebras up to isomorphisms by their K-theoretical data. One of the high lights
of the success of the Elliott program is the classification of unital simple AH-algebras (induc-
tive limits of homogeneous C*-algebras) with no dimension growth by their K-theoretical data
(known as the Elliott invariant) ([I6]). The proof of this first appeared near the end of the last
century. Immediately after the proof appeared, among many questions raised is the question
whether the same result holds for unital simple locally AH-algebras (see the definition 3.5 below)
with no dimension growth. It should be noted that AF-algebras is locally finite dimensional.
But (separable) AF-algebras are inductive limits of finite dimensional C*-algebras. The so-called
AT-algebras are inductive limits of circle algebras. More than often, these AT-algebras arise
as local circle algebras (approximated by circle algebras). Fortunately, due to the weak-semi-
projectivity of circle algebras, locally AT-algebras are AT-algebras. However, the situation is
completely different for locally AH algebras. In fact it was proved in [11] that there are unital
C*-algebras which are inductive limits of AH-algebras but themselves are not AH-algebras. So
in general, a locally AH algebra is not an AH algebra.

On the other hand, however, it was proved in [26] that a unital separable simple C*-algebra
which is locally AH is a unital simple AH-algebra, if, in addition, it has real rank zero, stable
rank one and weakly unperforated Ky-group and which has countably many extremal traces.
In fact these C*-algebras have tracial rank zero. The tracial condition was late removed in
[58]. In particular, if A is a unital separable simple C*-algebra which is locally AH with no (or
slow) dimension growth and which has real rank zero must be a unital AH-algebra. In fact such
C*-algebras have stable rank one and have weakly unperforated Ky(A). The condition of real
rank zero forces these C*-algebras to have tracial rank zero. More recently, classification theory
extends to those C*-algebras that are rationally tracial rank at most one ([59], [32], [37] and
[35]). These are unital separable simple amenable C*-algebras A such that A ® U have tracial
rank at most one for some infinite dimensional UHF algebra U. An important subclass of this
(which includes, for example, the Jiang-Su algebra Z) is the class of those unital separable simple
C*-algebras A such that A® U have tracial rank zero. By now we have some mechanical tools to
verify certain C*-algebras to have tracial rank zero (see [20], [5], [568] and [38]) and based on these
results, we have some tools to verify when a unital simple C*-algebra is rationally tracial rank
zero ([55] and [54]). However, these result could not be applied to the case that C*-algebras are
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of tracial rank one, or rationally tracial rank one. Until now, there is no effective way, besides
Gong’s decomposition result ([I8]), to verify when a unital separable simple C*-algebra has
tracial rank one (but not tracial rank zero). In fact, as mentioned above, we did not even know
when a unital simple separable locally AH algebra with no dimension growth has tracial rank
one. This makes it much hard to decide when a unital simple separable C*-algebra is rationally
tracial rank one.

Closely related problem is whether a unital separable simple C*-algebra with finite tracial
rank is in fact of tracial rank at most one. This is an open problem for a decade. If the problem
has an affirmative answer, it will make easier, for many cases, to decide certain unital simple
C*-algebras to have tracial rank at most one.

The purpose of this research is to solve these problems. Our main results include the follow-
ing:

Theorem 1.1. Let A be a unital separable simple C*-algebra which is locally AH with no
dimension growth. Then A is isomorphic to a unital simple AH-algebra with no dimension
growth.

We actually prove the following.

Theorem 1.2. Let A be a unital separable simple amenable C*-algebra with finite tracial rank
which satisfies the Universal Coefficient Theorem. Then A is isomorphic to a unital simple
AH-algebra with no dimension growth. In particular, A has tracial rank at most one.

To establish the above, we also prove the following

Theorem 1.3. Let A be a unital separable simple C*-algebra in C1 then A is Z-stable, i.e.,
A2 AR Z.
(See below for the definition of Cy.)

The article is organized as follows. Section 2 serves as a preliminary which includes a
number of conventions that will be used throughout this article. Some facts about a subgroup
SU(M,(C(X))/CU(M,(C(X))) have been discussed. The detection of those unitaries with
trivial determinant at each point which are not in the closure of commutator subgroup play
new role in the Basic Homotopy Lemma which will be presneted in section 11. In section 3,
we introduce the class C; of simple C*-algebras which may be described as tracially locally AH
algebras of slow dimension growth. Several related definitions are given. In section 4, we discuss
some basic properties of C*-algebras in class Cy. In section 5, we prove, among other things,
that C*-algebras in C; have stable rank one and the strict comparison for positive elements. In
section 6, we study the tracial state space of a unital simple C*-algebra in C;. In particular, we
show that every quasi-trace of a unital separable simple C*-algebra in C; extends to a trace.
Moreover, we show that, for a unital simple C*-algebra A in C;, the affine map from the tracial
state space to state space of Ky(A) maps the extremal points onto the extremal points. In
section 7, we discuss the unitary groups of simple C'*-algebras in a subclass of Cq. In section
8, using what have been established in previous sections, we combine an argument of Winter
([60])and an argument of Matui and Sato ([39]) to prove Theorem above. In section 9 we
present some versions of so-called existence theorem. In section 10, we present a uniqueness
statement that will be proved in section 12 and an existence type result regarding the Bott map.
The uniqueness theorem holds for Y being a finite CW complex of dimension zero as well as
the case that ¥ = [0,1]. An induction on the dimension d will be presented in the next two
sections. In section 11, we present a version of The Basic Homtopy Lemma which was first
studied intensively in [4] and later in [3I]. A new obstruction for the Basic Homotopy Lemma
in this version will be dealt with which was earlier mentioned in section 2. In section 12, we
prove the uniqueness statement in section 10. In section 13 we present the proofs for Theorem
[[Il and [[L3] Section 14 serves an appendix to this article.



2 Preliminaries

2.1. Let A be a unital C*-algebra. Denote by T(A) the convex set of tracial states of C.
Let Aff(T(A)) be the space of all real affine continuous functions on T'(A). Denote by M, (A)
the algebra of all n x n matrixes over A. By regarding M,,(A) as a subset of M, 1(A), define
My (A) = U0 My (A). If 7 € T(A), then 7 ® Tr, where Tr is standard trace on M, is a trace
on M, (A). Throughout this paper, we will use 7 for 7 ® Tr without warning.

We also use QT (A) for the set of all quasi-traces of A.

Let C and A be two unital C*-algebras with T'(C') # 0 and T(A) # (. Suppose that h :
C — A is a unital homomorphism. Define an affine continuous map hy : T(A) — T(C) by
hy(7)(c) = 7o h(c) for all 7 € T(A) and c € C.

Definition 2.2. Let C' be a unital C*-algebra with T'(C) # 0. For each p € M, (C) define
p(7) = (1 ® Tr)(p) for all 7 € T(A), where Tr is the standard trace on M,,. This gives positive
homomorphism p¢c : Ko(C) — Aff(T(C)).

A positive homomorphism s : Ky(A) — Cis astate on Ko(A) if s([14]) = 1. Let S(Ko(A)) be
the state space of Ky(A). Define r4 : T(C) — S(Ko(A)) by ra(7)([p]) = 7(p) for all projections
p € My(A) (for all n > 1).

Definition 2.3. Let A and B be two C*-algebras and ¢ : A — B be a positive linear map. We

will use (%) : A — My (B) for the map @) (a) = ¢(a) @ 1pr,. If @ € B, we may write a®)
K

for the element a ® 1,7, and sometime it will be written as diag(a,a, ..., a).

Definition 2.4. In what follows, we may identify T with the unit circle and z € C(T) with the
identity map on the circle.

Definition 2.5. Let A be a unital C*-algebra. Following [17], define
FoKi(A) = {psi() € Ki(A) : ¢ € Hom(C(S™), Mo (A))},

where 2 is a generator (the bott element) of K;(C(S™)), if ¢ = 0 and n even, or i = 1 and n
odd. F,,K;(A) is a subgroup of K;(A), i=0,1.

Definition 2.6. Fix an integer n > 2, let z be a generator of K;1(C(5%"71)). Let 2, be a unitary
in M, (C(S?"~1)) which represents z. We fix one such unitary that z, € SU,(C(S?"71)), i..,
det(u(x)) = 1 for all z € S?"~1. In case n = 2, one may write

2 = (; _Zw> , (e2.1)

where §% = {(z,w) € C2: |22 + [w]? = 1}.

2.7. Let C be a unital C*-algebra. Denote by U(C) the unitary group of C' and denote by
Up(C) the subgroup of U(C') consisting of unitaries which connected to 1¢ by a continuous path
of unitaries. Denote by CU(C) the closure of the normal subgroup generated by commutators
of U(C). Let uw € U(C). Then @ is the image of v in U(C)/CU(C). Let W C U(A) be a subset.
Denote by W the set of those elements % such that u € W. Denote by CUy(C) the intersection
CU(C)NUy(C). Note that U(A)/CU(A) is an abelian group.

We use the following metric on U(A)/CU(A) :

dist(@,v) = inf ||luv™ —w|| : w € CU(A)}.



Using de la Harp-Scandalis determinant, by K. Thomsen (see [52]), there is a short splitting
exact sequence

0 = AfE(T(C))/pc(Ko(C)) = Uy U(Mn(C))/CU(M,(C)) = K1(C) = 0. (€2.2)

Suppose that 7 > 1 is an integer and U (M, (A))/U(M,(A))o = K1(A), one has the following
short splitting exact sequence:

0 = AfH(T(C))/po(Ko(C)) = U(M,(C))/CU(M(C)) = K1(C) — 0. (€2.3)

For u € U(C), we will use A(u) for the de la Harp and Skandalis determinant of u, i.e.,
the image of u in Aff(T(C))/pc(Ko(C)). For each C*-algebra C with U(C)/Uy(C) = K;(C),
we will fix one splitting map J. : K;(C) — U(C)/CU(C). For each u € J.(K;(C)), select
and fix one element u. € U(C) such that @, = @. Denote this set by U.(K7(C)). Denote by
. : U(C)/CU(C) — K1(C) the quotient map. Note that II. o J. = idg, ().

If A is a unital C*-algebra and ¢ : C — A is a unital homomorphism, then ¢ induces a
continuous homomorphism

ot U(C)/CU(C) — U(A)/CU(A).
If g € Aff(T(A)), denote by g the image of g in Aff(T(A))/pa(Ko(A)).

Definition 2.8. Let A and B be two unital C*-algebras. Let Gy C U(M,,(A))/CU(M,,(A))
be a subgroup. Let v : Gy — U(M,,(B))/CU(M,,(B)) be a homomorphism and let I' :
Aff(T(A)) — Aff(T(B)) be an affine homomorphism. We say that I' and )\ are compati-
ble if () = T(g) for all g € Aff(T(A)) such that § € Gy N Uy(M,,(B))/CU(M,,(B)) C
Aff(T(A))/pa(Ko(A)). Let X : T(B) — T(A) be continuous affine map. We say v and \ are
compatible if v and the map from Aff(T(A)) — Aff(T(B)) induced by A are compatible. Let
k € Homp(K(A), K(B)). We say that £ and v are compatible if x|, (4)(2) = . 0 y(z) for all
z € G1. We say that x and A are compatible if pp(k|xyca)([p]) = A(7)([p]) for all projections
p € My (A).

Definition 2.9. Let X be a compact metric space and let P € M,,(C(X)) be a projection in
M, (C(X)) such that P(x) # 0 for all z € X, where m > 1 is an integer. Let C' = PM,,(C(X))P
and let 7 > 1 be an integer. Denote by SU,(C') the set of those unitaries u € M, (C') such that
det(u(z)) =1 for all z € X. Note that SU,(C) is a normal subgroup of U, (C).

The following is an easy fact.

Proposition 2.10. Let C be as in[2.9, let Y be a compact metric space and let Py € M, (C(Y))
be a projection such that Pi(y) # 0 for all y € Y. Let B = PiM,(C(Y))P,. Suppose that
¢ : C — B is a unital homomorphism. Then ¢ maps SU,.(C) into SU,.(B) for all integer r > 1.

It is also easy to see that CU(M,(C(C))) C U2 SU,(C) N Up(My(C)). Moreover, one has
the following:

Proposition 2.11. Let X be a compact metric space and let C = PM,,(C(X))P be as in[2.9.
Then
SU.(C)NUy(M,(C)) C CUM,(C)) for all integer r > 1.

Proof. Let u € SU,.(C) N Uy(M,(C)). Write u = Hé?:l exp(v/—1h;), where hj € M, (C)sq.. Put
R(x) = rank P(z) for all € X. Note R(z) # 0 for all x € X. It follows that

k

%\/_ jz h(x €z, (e2.4)



where T}, is the standard trace on M, g(,). Note that N(z) € C(X). Therefore there is a projection
Q@ € My (C) such that

rank@Q(xz) = N(z) for all z € X. (e2.5)
Let 7 € T(C). Then

T(f) = /th(f)duT for all f € PM,,(C(X))P, (€2.6)

where ¢, is the normalized trace on Mp(,) and p, is a Borel probability measure on X. Let T'r
be the standard trace on M. Then

(@) = /X (tr © Tr) (Q(a))dpir (e2.7)
[ N .
= | R dpr (e2.8)

for all 7 € T'(C'), Define a smooth path of unitaries u(t) = H§:1 exp(v/—1h;(1—1)) for t € [0, 1].
So u(0) = w and u(1) = idyy, ¢y Then, with T' being the standard trace on M,,

1 ! du(t) .. 1 ! b
(277—_1)/0 (r o) 200 dt—(zm/__l)/o (T®T)(j§::1hj)dt (2.9)
o £ R () hy()
-G [ (e T3y = (o | EEEE s e20)
= /X g((;f))duT: pc(Q)(r) for all 7€ T(C). (e2.11)

By a result of Thomsen ([52]), this implies that
u=1eU(M(C))/CUM(C).
In other words,
SU(C)NUH(C) C CU(M,(C)).
O

Definition 2.12. Let X be a finite CW complex. Let X be the n-skeleton of X and let
sp : C(X) — C(X™) be the surjective map induced by restriction, i.e., s,(f)(y) = f(y)
for all y € X, Let P € M;(C(X)) be a projection for some integer I > 1 and let C' =
PM;(C(Y))P. Denote still by s, : C — PO M (C(X™))P™ where P™ = P|y,). Put C,, =
PO M (C(X™))P™), Note that C, is a quotient of C, and C,_1 is a quotient of C),. It was
proved by Exel and Loring ([17]) that F, K;(C) = ker(s,—1)xi-

Suppose that X has dimension N. Let

In =kerry_1 ={f € C: flxw-1 =0}

Then Iy is an ideal of C. There is an embedding jy : Iy — C which maps A1+ ftoA-1g+ f
for all f € In. Define, for 1 <n < N,

In={f€Cpn: flxm-1 =0}

Again, there is an embedding jj, : I, = Ch.
Note that I,, = P M;(C(Y,,))P™', where Y, = S*\/ S™\/---\/ S™ (there are only finitely
many of S™).



Lemma 2.13. Let X be a compact metric space. Then
Tor(K;(C(X))) C F3K1(C(X)). (e2.12)

Proof. We first consider the case that X is a finite CW complex. Let Y be the 2-skeleton of X
and let s : C(X) — C(Y) be the surjective homomorphism defined by f +— f|y for f € C(X).
Then, by Theorem 4.1 of [17],

F3K1(C(X)) = kersy. (e2.13)
Since K7 (C(Y)) is torsion free, Tor(K;(C(X))) C kers,;. Therefore
Tor(K1(C(X))) C F3K;(C(X)). (e2.14)

For the general case, let g € Tor(K;(C(X)) be a non-zero element. Write C'(X) = limy, 00 (C(X5), ¢n),
where each X, is a finite CW complex. There is ng and ¢’ € K1(C(Xp,) such that (¢ng,00)1(9") =
g. Let G; be the subgroup generated by ¢’. There is n; > ng such that (¢, 0)«1 is injective on
(‘pnoml)*l(Gl)’ Let g1 = (Spno,ru)*l(g/)’ Put Gg = (Spno,ru)*l(Gl)' Then G C TOT(Kl(C(XTn)))’
From what has been proved, Ga € F3K;(C(Xy,)). It follows from part (c) of Proposition 5.1 of
[17] that ¢, 00(G2) C F3K1(C(X)). It follows that g € F5K;(C(X)).

O

Lemma 2.14. Let X be a compact metric space and let G C K1(C(X)) be a finitely generated
subgroup. Then G = G1 ® G N F3K1(C (X)), where Gy is a finitely generated free group.

Proof. As in the proof of 2.13] we may assume that X is a finite CW complex. Let Y be
the 2-skeleton of X. Let s : C(X) — C(Y) be the surjective map defined by the restriction
s(f)(y) = f(y) forall f € C(X) and y € Y. Then, by Theorem 4.1 of [I7], kers,; = F3K;(C(X)).
Therefore G/G N F3K1(C(X)) is isomorphic to a subgroup of Ki(C(Y)). Since dimY = 2,
Tor(K1(C(Y))) = {0}. Therefore G/G N F3K;(C(X)) is free. It follows that

G=G®GNFK (C(X))
for some finitely generated subgroup Gj. O

Definition 2.15. Let C be a unital C*-algebra and let G C K;(C) be a finitely generated
subgroup. Denote by J' : K1(C) — U2, U(M,(C))/CU(M,(C)) an injective homomorphism
such that ITo J" = idg, (¢), where II is the surjective map from Uy, U(M,(C))/CU(M,(C))
onto K;(C). There is an integer N = N(G) such that J'(G) € U(My(C))/CU(My(C)).

Let X be a compact metric space and let C' = PM,,(C(X))P, where P € M,,(C(X)) is a
projection such that P(z) # 0 for all z € X. By 2.14] one may write G = G1 ® Gy ® Tor(G),
where Gy, is the free part of GNF3K1(C). Note, by 213 Tor(G) C F3K1(C). Let g € Tor(G) be
a non-zero element and let wy; = J'(g) for some unitary uy, € U(My(C)). Suppose that kg = 0
for some integer k > 1. Therefore ulg € CU(Mn(C)). It follows from 213 as well as 2.6 there

are hi, ha,...,hs € Mn4,(C)s.q. such that
ur [[ exp(V=1h;) € SU+n(C),
j=1
where u; = 17, ® v and r > 0 is an integer. For each z € X, [detu; (x)]* = 1. It follows that

2251 kTr(hy)(x)
21/ —1

=1I(z) € Z for all x € X.



It follows that I(x) € C(X). Therefore
(I exp(v=1h;))* € ST N (C) N Un(Mr4x(C)) € CUn(C).

Consequently,

(ul H exp( \ _1hj))k = 1MT+N(C)-
j=1

Thus there is an integer R(G) > 1 and an injective homomorphism
Jo@) : Tor(G) = SUgq)(C)/CU(Mp(C))

such that ITo Jyq) = idror(q)- By choosing a larger R(G), if necessarily, one obtains an injective
homomorphism Jyq) : G — U(Mp(e) (C ))/CU(MR(G)(C)) such that

and IIo J, g =idg.

It is important to note that, if z € SUpg)(C) and [z] € G\ {0} in K1(C). Then J.([z]) = 7.
In fact, since [z] € Gj @ Tor(G), if Jo([z]) = g, then y € SUg)(C). It follows that z*y €
SUg)(C) N Us(Mp(y(C)) € CU(C). So y = . This fact will be also used without further
notice. Note also that if dimX < oo, then we can let R(K;(C(X))) = dimX.

Therefore one obtains the following;:

Proposition 2.16. Let X, G, Gy, and 11 be as described in [2.13. Then there is an injective
homomorphism Jyqy : G — Ugrq)(C)/CU(Mpa)(C)) for some integer R(G) > 1 such that
o Jyq) =idg and Joq)(Gy © Tor(G)) C SUge)(C)/CU(Mp(c)(C)). In what follows, we may
write J. instead of J.qy, if G is understood.

Corollary 2.17. Let X, G and Gy be as in[213 and let Y be a compact metric space. Suppose
that B = P M, (C(Y))Py, where P, € M, (C(Y)) is a projection and ¢ : C — B is a unital
homomorphism. Suppose also that z, € Gy, ® Tor(G) and ¢4 (zp) = 0. Then gpi(Jc(G)(zb)) =1
in U(Mn(C))/CU(Mn(C)) for some integer N > 1, when dimY = d < co, N can be chosen to
be max{R(G), d}.

Proof. Suppose that u, € U(Mpg(e)(C)) such that @ = J.q(2). Without loss of generality, one
may assume that ¢(up) € Up(Mpq)(B)), since ¢.1(zp) = 0. By 16 up € SUN(C). It follows
from 101 that p(up) € SUg(q)(B). Thus, by 211}

o(up) € SUR(a)(B) NUo(Mp(cy(B)) C CU(Mpgg)(B))-

It follows that cpi(Jc(G)(zb)) =1
U

Definition 2.18. Let A be a unital C*-algebra and let u € Uy(A). Denote by cel(u) the infimum
of the length of the paths of unitaries of Uy(A) which connects u with 14.

Definition 2.19. We say (6,G,P) is a K L-triple, if, for any J-G-multiplicative contractive
completely positive linear map L : A — B (for any unital C*-algebra B) [L]|p is well defined.
Moreover, if Ly and Lo are two J-G-multiplicative contractive completely positive linear maps
Lqi,Ly: A — B such that

[1L1(g) — La(g)l] <6 for all g € g, (€2.16)



[L1]lp = [La]|p-

If K;(C) is finitely generated (i =0, 1) and P is large enough, then [L]|p defines an element
in KK(C, A) (see 2.4 of [31]). In such cases, we will write [L] instead of [L]|p, and (d,G,P) is
called a K K-triple and (6,G) a K K-pair.

Now we also assume that A is amenable (or B is amenable). Let u € U(B) be such that
I[L(g), u]|| < dp for all g € Gy for some finite subset Gy C A and for some dy > 0. Then, we may
assume that there exists contractive completely positive linear map ¥ : A ® C(T) — B such
that

IL(g) —¥(g®1)|]| <o for all g€ G and |[¥(1®2)—ul| <o

(see 2.8 of [31]). Thus, we may assume that Bott(L, u)|p is well defined (see 2.10 in [31]). In
what follows, when we say (0,G,P) is a K L-triple, we further assume that Bott(L,u)|p is well
defined, provided that L is J-G-multiplicative and |[[L(g), u]|| < ¢ for all g € G. In case that
K;(A) is finitely generated (i = 0,1), we may even assume that Bott(L, u) is well defined. We
also refer to 2.10 and 2.11 of [31] for botto(L,u) and bott;(L,u). If u and v are unitary and
l[u, v]|| < 6, we use botti(u,v) as in 2.10 and 2.11 of [31]. Let p is a projection and ||[p, v]|| <,
we may also write bottg(p, v) for the element in K;(B) represented by a unitary which is close
to (1 —p) + pup.
Definition 2.20. If v is a unitary, we write (L(u)) = L(u)(L(u)*L(u))~ /2 when ||L(u*)L(u) —
1] < 1and || L(u)L(u*)—1|| < 1. In what follows we will always assume that ||L(u*)L(u)—1] < 1
and ||L(u)L(u*) — 1| < 1, when we write (L(u)).

Let B be another unital C*-algebra and let ¢ : A — B be a unital homomorphism. Then

(poL(u)) = p((L(u))). Let u € CU(A). Then, for any e > 0, if § is sufficiently small and G is
sufficiently large (depending on u) and L is §-G-multiplicative, then

dist((L(w)), CU(B)) < e.

Let § > 0, G C A be a finite subset, W C U(A) be a finite subset and € > 0. We say (4,G, W, €) is
a U-quadruple, provided the following hold: if for any §-G-multiplicative contractive completely
positive linear map L : A — B, (L(y)) is well defined,

I{L(w)) = L(u)|| < €/2 and [[{L(u)) = (L(v))| < €/2,
if u, v €U and ||u — v|| < §. We also require that, if u € CU(A) NU,
I{L(u)) —cll <€/2

for some ¢ € CU(B). We make one additional requirement. Let Gz be the subgroup of
U(A)/CU(A) generated by {@ : u € U}. There exists a homomorphism A : Uy — U(B) such
that

dist((L(u)), A(u)) < € for all ueld

(see Appendix[IZ.5 for a proof that such \ exists). We may denote L* for a fixed homomorphism
A. Note that, when ¢ < 1, [(L(u))] = IL.(L*(@)) in K1(B), where Il. : U(B)/CU(B) — K1(B)
is the induced homomorphism.

2.21. Let A and B be two unital C*-algebra.. Suppose that A is a separable amenable C*-
algebra. Let @ C Ky(A) be a finite subset. Then B(Q) C K1(A ® C(T)). Let W be a finite
subset of U(M,(A ® C(T))) such that its image in K;(A ® C(T)) containing 3(Q). Denote
by G(Q) the subgroup generated by Q. Fix ¢ > 0. Let (§,G,W,€) be a U-quadruple. Let
J' : B(G(Q)) — UMy(A® C(T)))/CU(Mn(A® C(T))) be defined in ZI5l Let L: A — B



be a §-G-multiplicative contractive completely positive linear map and let u € U(B) such that
IIL(g), u]|| < ¢ for all g € G. With sufficiently small § and large G, let ¥ be given in 2.19] we
may assume that U# is defined on J'(3(G(Q))). We denote this map by

Bu(p, u)(z) = UH(J'(x))) for all z € Q. (e2.17)

We may assume that [p1], [p2], ..., [px] generates Q, where py,pa, ..., pr are assumed to be pro-
jections in My(A). Let z; = (1 —p;) +p;(1® 2)N) (see Z3), j = 1,2,....;k. Then z; is a
unitary in My(A @ C(T)). Suppose that A = C(X) for some compact metric space. In the
above, we let J' = Jgg(g)) = Je and N = R(B(G(Q))). Note z; ¢ SUN(C(X) ® C(T)). If
[pi] — [pj] € kerpe(x), then for each z € X, there is a unitary w € My such that w*p;(z)w = p;.
Then det(z;z7(x)) = 1. In other words, z;z; € SUn(C(X) ® C(T)). Note, by the end of 2.15]
Je(lps]) = %5, j = 1,2,...,k. If B has stable rank d, we may assume that, R(8(G(Q))) > d + 1.
In what follows, when we write Bu(y, u)(z), or Bu(p,u)|g, we mean that ¢ is sufficiently small
and G is sufficiently large so that L* is well defined on J.(3(z), or on J.(8(Q)). Moreover, we
note that [L]|g = II' o L B(0)- Furthermore, by choosing even smaller J, we may also assume
that when
Ile(g), ulll <6 and |[[p(g), v][| <& for all g€ G

dist(Bu(p, uv)(z), Bu(p, u)(g) + Bu(p, v)(z)) <€ for all z € Q.
Lemma 2.22. Let X be a connected finite CW complex of dimension d > 0. Then K,(C(X(¢1))
Gox @ K. (C(X))/FyK.(C(X)), where Gy is a finitely generated free group. Consequently,
Ki(C(XW) = S & Ki(C(X))/F3 K (C(X)),
where S is a finitely generated free group.

Proof. Let I'D = {f € C(X) : f|yw@-1 = 0}. Then I¥) = Cy(Y), where Y = S v §¢v ... v §%
In particular, K, (I?) is free. Therefore, by applying 4.1 of [I7],

K;i(C(X19D)) 2 Gy, @ Ki(C(X))/FaKi(C(X)),

where Gy ; is isomorphic to a subgroup of Ki_l(I(d)), 1=0,1.

For the last part of the lemma, we use the induction on d. It obvious holds for d = 1.
Assume the last part holds for dimX = d > 1. Suppose that dimX = d + 1. Let s, : C(X) —
C(XM), 51 : C(X) = C(XW), 5,1 : C(XM™) — C(XD) be defined by the restrictions
(0 < m < d). We have that s; = sp,1 © sp,. Note that if ¥ is a finite CW complex with
dimension 2, then K (kers) ) = {0}, where s} : C(Y) — C(Y (D) is the surjective map induced
by the restriction, where Y1) is the 1-skeleton of Y. It follows that the induced map (s} ).; from
K1(C(Y)) into K1(Y(D) is injective. This fact will be used in the following computation.

We have

E(C(XD)) = Sy @ K1 (C(X))/Fak1(C(X)) = So @ (sa)s1 (K1(C(X))) (e2.18)
and, by 4.1 of [17],

K(C(XD) = 8 &K (C(X® >/F3K1< (X)) (€2.19)
= S1® (sg1)a (K1 (C(X D)) (e2.20)
= S1® (5a,1)1(S0 @ (sa)1(K1(C(X)))) (e2.21)
= S1® (84,1)41(S0) @ (84,1)1((50)1 (K1 (C(X)))) (e2.22)
= S1® (54,1)1(50) @ (s1)41 (K1(C(X))) (e2.23)
= 51D (84,1)1(50) D (s2,1)41 © (s2)41 (K1 (C(X))) (e2.24)
= 519 (841)+1(50) ® (52):1(EK1(C(X))/F3K1(C(X))) (e2.25)
= 51 (84,1):1(50) ® K1(C(X))/F3K1(C(X))). (e2.26)



Put S = S1®(54,1)+1(50). Note Kl(C(X(l)) is free. So S must be a finitely generated free group.
This ends the induction.
O

3 Definition of C;

Definition 3.1. Let A be a C*-algebra and let a,b € A. Recall that we write a < b if there
exists a sequence z,, € Ay such that

. « B
7}1_)1{)10||33nb$n al| = 0.

If @ = p is a projection and a < b, there is a projection ¢ € Her(b) and a partial isometry v € A
such that vv* = p and v*v = gq.

Definition 3.2. Let 0 < d < 1. Define f; € Co((0,00]) by fa(t) =0 if t € [0,d/2], fa(t) =1 if
t € [d,00), and fy is linear in (d/2,d).

Definition 3.3. Denote by Z() the class of finite dimensional C*-algebras and denote by Z(19)
the class of C*-algebras with the form C([0,1]) ® F, where F' € Z(9). For an integer k > 1, denote
by Z) the class of C*-subalgebra with the form PM,(C(X))P, where r > 1 is an integer, X is
a finite CW complex of covering dimension at most k£ and P € M, (C(X)) is a projection.

Definition 3.4. Denote by Zj, the class of those C*-algebras which are quotients of C*-algebras
in Z"). Let C' € Z.. Then C = PM,(C(X))P, where X is a compact subset of a finite CW
complex, » > 1 and P € M,(C(X)) is a projection. Furthermore, there exists a finite CW
complex Y of dimension k such that X is a compact subset of Y and there is a projection
Q € M. (C(Y)) such that 7(Q) = P, where 7 : M,.(C(Y)) — M,(C(X)) is the quotient map
defined by 7(f) = f|x.

Definition 3.5. Let A be a unital C*-algebra. We say that A is a locally AH-algebra, if for
any finite subset F C A and any € > 0, there exists a C*-subalgebra C € 7 (for some k > 0)
such that

dist(a,C) < € for all a € F.

A is said to be locally AH-algebra with no dimension growth, if there exists an integer d > 0,
for any finite subset F C A, any € > 0 and any 1 > 0, there exists a C*-subalgebra C' C A with
the form C = PM,(C(X))P € Z; such that

dist(a,C) < € for all a € F. (e3.27)

Definition 3.6. Let g : N — N be a nondecreasing map. Let A be a unital simple C*-algebra.
We say that A is in C, if the following holds: For any finite subset 7 C A, any € > 0 and any
a € Ay \ {0}, there is a projection p € A and a C*-subalgebra C = PM,(C(X))P € Z; with
1¢c = p such that

|lpa —ap|] < € for all a € F, (e3.28)
dist(pap,C) < € for all a € F, (e3.29)
d+1 n
_ f 1 X .
rank(P(2)) < 7@ +1 or all x € X and (e3.30)
l1-p < a. (€3.31)

If g(d) = d for all d € N, we say A € C;.
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Let B be a class of unital C*-algebras. Let A be a unital simple C*-algebra. We say that A
is tracially in B if the following holds: For any finite subset F C A, any € > 0, any a € A4 \ {0}
and any 1 > 0, there is a projection p € A and a C*-subalgebra B € B with 15 = p such that

lpa —ap|| < € for all a € F, (e3.32)
dist(pap, B) < € for all a € F and (e3.33)
1-p < a. (€3.34)

We write A € Cy o, if A is tracially Zy for some integer d > 0.
Using the fact that A is unital simple, it is easy to see that if A € Cy then A € C,.
Moreover, C, C C; for all g.

4 ("-algebras in C,

Proposition 4.1. Every unital hereditary C*-subalgebra of a unital simple C*-algebra in C,
(or in Cg.o0) is in Cy(or is in Cg o).

Proof. Let A be a unital simple C*-algebra in C, and let e € A be a non-zero projection. Let
B = eAe be a unital hereditary C*-subalgebra of A. To prove that B is in C4, let 7 C B be a
finite subset, let 1 > ¢ >0, b € B1 \ {0} and let > 0.

Since A is simple, there are x1, o, ..., z,, € A such that

m
Z:E}kezni = 1y4. (e4.35)
i=1

Let Fi = {e} UF U {z1,22,...,Tm, 2], 25, ..., x5, }. Put M = max{||a| : a € F1}. Since A € C,,
there is a projection p € A, a C*-subalgebra C' C A with 1¢ = p, C = PM,(C(X))P, where
X is a compact subset of a finite CW complex with dimension d, » > 1 is an integer and
P € M,.(C(X)) is a projection, such that

d+1
€
lpx —zp|| < 356(m £ M for all =z € F, (e4.37)
. €
dist(pzp,C) < m for all x € F and (e4.38)
1-p < b (e4.39)

There is a projection ¢; € C, a projection ¢2 € B and y1,y2, ..., Yym € C such that

€

— - - 4.40
lor=pepll < Sogm v Dar (e4.40)
€ m

_ oL = P, 4.41

It follows that ¢;(z) has rank at least rank P(x)/m for each x € X. One also has

€
— —_ . 4.42
There is a unitary w € A such that
€
-1 ——— and w* = @o. 4.4

lw— 1| < 50m + M and w qw = g2 (e4.43)
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Define C7 = w*q1Cqrw. Then C; = ¢1Cq1 € Z,. Moreover,

rank((juj;]llw)(x) <n/(g(d) +1) for all x € X. (e4.44)
For any a € F,
la2a —aga|| < 2[l¢1 — @2ll[lall + [lq1eae — eaeq:|| (e4.45)
< e (e 4.46)
Moreover, if ¢ € C' such that
llpap — ¢|| < m, (e4.47)
then
lqagr — qreqr|| < |lgraqr — pepapep|| + ||[pepapep — qicq: || (e4.48)
2e 2e _ € (4.49)

256(m+1)  256(m+ 1) 6dm 1)
It follows from (e4.40), (e4.42), (c4.43) and ([e4.49) that

lpag2 — w*qreqrwl] = [lgags — w* guwaw* gyu (e 4.50)
+  |Jw*waw*gpuw — w*qreqrw|| (e4.51)
de
< *qo — 4.52
350m 1+ 1M + llggwaw* g2 — qieqi || (e4.52)
L S P —— (e4.53)
8(m+1) ' 32(m+1) 420492 — q1cq1 .
6e 2e
< — 4.54
0m T 1) + 61m 7 1) + llqrag — qreqi || (ed.54)
Te € 15¢
= . 4.55
32(m 1)  6(m+ 1) 64(m 1) (e4.55)

Therefore, for all a € F,
dist(g2aqe, C1) < €. (e4.56)
Note that
e —gq2) —(e—q)(1—p)le— @)l < [(e—q)—e(l—pe| (e4.57)
< gz — epe| < m. (e4.58)
So, in particular, (e — g2)(1 — p)(e — ¢2) is invertible in (e — g2)A(e — g2). Therefore [e — ¢2] =
[(e —q2)(1 —p)(e — g2)] in the Cuntz equivalence. But

(e—q@)1-p)le—q) < (I-p)le—q)1-p) S1-p) (e4.59)
b. (e4.60)

A

We conclude that, in B,

(e—g2) S (e4.61)

It follows from (e4.44)), (e4.45)), (e4.56) and (e4.61) that B is in C,,.
Since C1 € Zg, if we assume that A is in Cy . Then the above shows that B € Cy .
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Proposition 4.2. A unital simple C*-algebra A which satisfies condition (€3.28), (€3.29) and
(e330) in the definition of (3.8 has property (SP), i.e., every non-zero hereditary C*-subalgebra
B of A contains a non-zero projection.

Proof. Let A be a unital simple C*-algebra satisfies the condition (3.28)), (e3.29]) and (e3.30])
in Suppose that B C A is a hereditary C*-subalgebra. Choose a € By \ {0} with ||a|| = 1.
Choose 1/4 > X > 0. Let f; € C(]0,1]) be such that 0 < f; <1, fi(t) =1forall t € [1 — \/4,1]
and f1(t) = 0 for t € [0,1 = A/2]. Put b = fi(a). Let fo € C([0,1]) be such that 0 < fo < 1,
fa(t) =1forallt € [1—A/2,1] and fo(t) =0 for t € [0,1—\]. Put ¢ = fa(a). Then b # 0, bc = b
and b,c € B.

Since A is simple, there are x1, o, ..., z,, € A such that

m
Z bz, = 1. (e4.62)
i=1

Let M = max{||z;|| : 1 <i < m}.

Let F = {a,b,c,z1,22,...,;Tm, 27,25, ...,x} }. For any 1/16 > € > 0, there is a projection
p € A and a C*-subalgebra C' C A with 1¢ = p, where C = PM,(C(X))P, r > 1 is an
integer, X is a compact subset of a finite CW complex with dimension d(X), P € M,(C(X)) is
a projection such that

d(X)+1
lpf — fpll < €/64(m+1)(M +1) for all fe F, (e4.64)
and dist(pfp, B) < €/64(m+1)(M +1). (e4.65)
There is a; € C such that
lpap — a1]] < €/64(m + 1)(M + 1). (e4.66)

By choosing sufficiently small €, we may assume that

[ fi(a1) — pfi(a)pll < 1/64, | fa(a1) — pfa(a)pll < 1/64, (e4.67)

and there are y1,yo, ..., ym € C such that
1> wi fi(pap)y — pl| < 1/16 and || Yy fi(a)y: —pl| < 1/16. (€4.68)
i=1 i=1

We may also assume that

[ f2(pap) — fa(a1)|| < 1/64 (e4.69)
1f1(pap) — fi(a1)|| < 1/64. (e4.70)

Let ¢ be the open projection which is given by limy_,o(f1(a1))"/*. Then by (€4.65), q(x)
has rank at least rankP(z)/m. Thus, in M,(C(X)), fi(a1)(x) has rank at least 4d(X) for all
x € X, by (e463]). It follows from Proposition 3.2 of [13] that there is a non-zero projection
e € fi(a1)Cfi(a1). Note that fa(a1)fi(a1) = fi(a1). Therefore

fa(ar)e =e. (e4.71)

13



It follows from that

lce —ell < [lpcpe — el = [[pfa(a)pe — €] (e4.72)
< lpfaa)pe — fa(ar)ell + [ f2(ar)e — ef| < 1/64. (€4.73)
(e4.74)
Similarly,
llec —e]| < 1/16. (e4.75)

It follows from 2.5.4 of [23] that there is a projection e; € cAc C B such that
lle —e] < 1.
O

Proposition 4.3. Let A be a unital simple C*-algebra in Cy (or in Cy ). Then in (e3.29), we
can also assume that, for any € > 0,

lpzpl| > ||z|| — € for all z € F.

Proof. The proof of this is contained in that of Note that in the proof of 4.2 (e4.68]) implies
that fi1(pap) # 0. This implies that ||pap| > 1 — A/2. With A = ¢, this will gives ||pap|| > 1 — A.
This holds for any finitely many given positive elements with ||a|| = 1. If 0 # ||a|| # 1, it is clear
that, by considering elements a/||a||, we can have ||pap| > ||a|| — €. In general, when x is not

positive, we can enlarge the finite subset F so it also contains z*z. We omit the full proof.
O

Proposition 4.4. Let A be a unital simple C*-algebra. Then the following are equivalent:
(1) AeCy (orinCyoo);
(2) for any integer n > 1, M,,(A) € Cy4 (or in Cy ),
(3) for some integer n > 1, My (A) € Cy (or in Cg o).

Proof. 1t is clear that (2) implies (3). That (3) implies (1) follows from 4.1l To prove (1) implies
(2), let » > 1 be an integer, let F C M,(A) be a finite subset, ¢ > 0, a € M,,(A4)+ \ {0} and
o > 0. We first consider the case that A € C;.

Since A is simple, so is My(A). Let {e;;} be a matrix unit for M,. We identify A with
e11Aeqr. Therefore, (by 3.3.4 of [23], for example), there is a non-zero element a; € Ay such
that a; < a. Since A has property (SP), by 3.5.7 of [23], there are n mutually orthogonal and
mutually equivalent nonzero projections qi, qo, ..., ¢, € ajAa;. Choose a finite subset 71 C A
such that

{(@ij)nxn : aij € F1} O F. (e4.76)

Since we assume that A € C;, there exists a projection ¢ € A, a C*-subalgebra C C A with
l¢ =q, C = PM,.(C(X))P € Iy, where r > 1 is an integer, X is a compact subset of a finite
CW complex with dimension d(X) and P € M,(C(X)) is a projection, such that

lga —aq|| < €/n? for all a € F (e4.77)
dist(pap, C) < €/n? for all a € Fi, (e4.78)
d(X)+1
m < O'/(g(d) + 1) for all z € X and (e 479)
la-p X @ (e4.80)
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Now let p = diag(q,q, ..., q), @ = diag(P, P, ..., P) and B = M,,(C). Then B = QM,,(C(X))Q.

Moreover

|lpa —ap|| < € for all a € F, (e4.81)
dist(pap, B) < € for all a € F, (€4.82)
d(X) + 1
— d)+1) f 11 X. 4.
rankQ(7) < o/n(g(d)+1) for all x € (€4.83)
Furthermore,
Lag,a) — q S diag(qi, g2, - gn) S a1 S a. (e4.84)

Thus M, (A) € C;.
For the case that A € C,4 1, the proof is the same with obvious modification. We omit the
details.
O

The following is certainly known.

Lemma 4.5. Let X be a compact subset of a finite CW complex, r > 1 be an integer and
let E € M.(C(X)) be a projection. Then, there is a projection Q@ € My(EM,(C(X))E) for
some integer k > 1 such that QM (EM,(C(X))E)Q = M;(C(X)) and there is a unitary W €
My (EM,(C(X))E) such that W*EW < Q.

Proof. There is a decreasing sequence of finite CW complexes { X, } of dimension d (for some in-
teger d > 1) such that X = N2, X,,. There is an integer n > 1 and a projection E' € M, (C(X,,))
such that E'|x = E. There is an integer k > 1 and a projection Q' € My (E'M,(C(X,))E’) which
is unitarily equivalent to the constant projection idyy, for some [ > rankE’ + d. Note that there
is a unitary W’ € My (E'M,(C(X,))E") such that

(W/)*Elw/ S Q/-
Let W =W'|x. Then W*EW < Q. Let Z € My(E'M,(C(X,,))E’) be a unitary such that
Z*Q'Z =idp,.

Let @ = @'|x. Then QMy(EM,(C(X))E)Q = M;(C(X)).
O

Lemma 4.6. Let C = PM,(C(X))P, where r > 1 is an integer, X is a compact subset set of
a finite CW complex and P € M,.(C(X)) is a projection. Suppose that A is a unital C*-algebra
with the property (SP) and suppose that ¢ : C — A is a unital homomorphism. Then, for
any € > 0 and any finite subset F C C, there exists a non-zero projection p € A and a finite
dimensional C*-subalgebra B C A with 1g = p such that

lpe(f) —e(fpll < € for all f€F, (e4.85)
dist(o(f), B) < e (e4.86)
and [[pe(f)pl = lle()Il —€ for all x € F. (e4.87)

Proof. We first prove the case that C' = M, (C(X)). It is clear that this case can be reduced
further to the case that C' = C(X). Denote by C1 = ¢(C(X)) = C(Y), where Y C X is a
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compact subset. Let e > 0 and let F = {f1, fa, ..., fm} C C. There are 1,9, ..., 2, € X such
that

|90(f2)($l)| = H‘:D(fz)Hv 1=1,2,...,m. (e 4'88)

There exists § > 0 such that
|fi(z) = filz:)] < €/2 (e4.89)

for all « for which dist(z,z;) < 6, i = 1,2,...,m. Let ¢, € C(X) defined by g;(z) = 1 if
dist(z,z;) < 0/4 and g;(x) = 0 if dist(z,x;) > 6/2, i = 1,2,...,m. For each i, by 2] there
exists a non-zero projection e; € ¢(g:)A¢(g:), i = 1,2,...,m. Put p = >", e;. Let B be the
(C*-subalgebra generated by ey, e, ..., e,. Then B is isomorphic to a direct sum of m copies of
C. In particular, B is of dimension m. As in Lemma 2 of [20], this implies that

lpe(f) — o(f)pll < e and (e4.90)
o - fjlfweju < (e 491)
for all f € F. By (€458),
Ipeforl = 13 filas)esl - (49
> el == Uil — (49

i =1,2,...,m. This prove the case that C' = C(X). For the case that C = M, (C(X)), we note
that p(e11)Ap(er1) is simple and has (SP), where {e; ;} is a matrix unit for M,. Thus this case
follows from the case that C = C(X). Note that, in this case dimB = r?m.

Now we consider the general case. There is an integer K > 1 and a projection Q € Mg (C)
such that QMg (C)Q = M, (C(X)). By choosing a projection with larger rank, we may assume
that rank@ > rank P+ 2dim(X). By conjugating a unitary, we may further assume that Q > 1¢.
Define ® = ¢ ®idps, : Mg (C) — Mg (A) and define ¥ : QMg (C)Q — A1 = &(Q)Mk(A)P(Q)
by ¥ = Qg (0)q-

Now let € > 0 and let F C C be a finite subset. Let 1 = {Q,1c} U{Q((ai ;) kxKx)Q : a;j €
F}. Let M = max{||f| : f € F1}. From what we have shown, there is a projection p; € Mg (A)
and a finite dimensional C*-subalgebra B; C Mk (A) with 15, = p; such that

Ip1®(f) = @(flprll < €/8(M +1) (e4.94)
dist(®(f),B1) < ¢€/8(M +1) and (€4.95)
Ip1@(Hpall = (1R —e/8(M +1) (€4.96)

for all f € F;1. There is a projection e € By such that
[p1®(1c)pr —ell < e/4(M +1). (€4.97)

Then, for f € F C C,

lep(f) —@(flell < 2Mlle —p1@(1c)pill + [[p12(1e)p1@(f) — 2(f)p1®(1e)pi| (e4.98)
< €e/d+€¢/8(M +1) + [[p1®(1c)@(f) — (f)@(1c)pi (e4.99)
< €/d+¢€/8(M +1) +[[p1®(f) — 2(f)pl (e4.100)
< €/44+¢€/8(M +1)+¢/8(M+1) <e. (e4.101)
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Let B = eBje. Then we also have
dist(ep(f)e, B) = dist(ep(f)e,eBie) < ¢/8(M + 1) < e for all f e F. (e4.102)
It follows from (e4.96]) that

lep(flell > [p1@(1c)pi®(f)p1®(lc)prll — ¢/8(M + 1) (e4.103)

> p12(1e)@(f)2(le)p] — €/4(M +1) (e4.104)

= [lp1@(f)pal —€/2(M +1) (€4.105)

= ()l —e/(M+1) = lle(f)ll — /(M +1) (4.106)

for all f € F. This completes the proof. O

Proposition 4.7. Let A be a unital simple C*-algebra with the property (SP). Suppose that
A satisfies the following conditions: For any § > 0 and any finite subset G C A, there exits a
projection q € A, a C*-subalgebra C € Iy, for some k > 1 with 1o = p such that

llgxr —zq| < 4, (e4.107)
dist(gqzq,C) < € and (e4.108)
lgzqll > |zl —€ for all z €G. (e4.109)

Then A satisfies the Popa condition: for any € > 0 and any finite subset F C A, there is a
projection p € A and a finite dimensional C*-subalgebra B C A with 1g = p such that

llpx — zp|| < €, dist(pxp, B) < € and ||pxp| > ||z| —€ (e4.110)
forall z € F.

Proof. Let € > 0 and let F C A be a finite subset. By the assumption, there is a projection ¢
and a C*-subalgebra C C A with C' € Z;, and with 1o = ¢ such that

llgx — xzq|| < €/8, dist(qrq,C) < €¢/8 and ||qzq| > ||z| —€ (e4.111)
for all x € F. For each z € F, let ¢, € C such that
lpxp — c.|| < €/8. (e4.112)

It follows from that, there is p € gAq and a finite dimensional C*-subalgebra B C qAq with
1 = p such that

[pex —capll < €/8, (e4.113)
dist(pegp, B) < €/8 and (e4.114)
[pcapll = leal| —€/8 (e4.115)

for all x € F. It follows that
lpr —apl| < |lpgz — pe|| + |leap — zqp|| (e4.116)
< €/8+|pgrq — pea| + €/8 + |lcap — qugp|| (e4.117)
< €/8+¢€¢/8+¢€/8+€/8 <€ (e4.118)

for all x € F. Also

dist(pzp, B) < ||pxp — pegpl| + dist(pegp, B) (e4.119)
= |lpgzgp — peapll +¢/8 < ¢ (€4.120)
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for all x € F. Moreover,

Ipzpll = llpgzapll > l[pc.pll —€/8 (e4.121)
> ool — /4> lgzgll - /4 — /8 (e4.122)
> x| —€/8—€/4—€/8> x| — € (e4.123)

for all z € F.
O

Corollary 4.8. Let A be a unital simple C*-algebra in C1. Then A satisfies the Popa condition.

Theorem 4.9. Let A be a unital separable simple C*-algebra in C1. Then A is MF, quasi-
diagonal and T(A) # 0.

Proof. By 4.2 of [29], every unital separable C*-subalgebra which satisfies the Popa condition
is MF ([3]). To see A is quasi-diagonal, let ¢ > 0 and let F C A be a finite subset. Let
F1 = {a,b,ab : a,b € F}. Since A has the Popa condition, there is a non-zero projection
e € A and a finite dimensional C*-subalgebra B C A with 15 = e such that |ex — ze|| < €/2
for all x € Fq, |lexe|]| > |lexe| — € and dist(z, B) < € for all x € Fj. There is a contractive
completely positive linear map L : eAe — B such that ||L(exe) — exe| < € for all x € Fj.
Define Ly : A — B by Li(z) = L(exe) for all z € A. Then ||L1(z)| > |lexe| — € for all z € F
and ||Li(a)Li(b) — Li(ab)|| < € for all a,b € F. It follows from Theorem 1 of [57] that A is
quasi-diagonal. Since it is MF, it has tracial state. It follows that A is finite. O

5 Regularity of C"*-algebras in C,

The following lemma is a variation of 3.3 of [13].

Lemma 5.1. Let X be a compact metric space with covering dimension d > 0. Let r > 1
be an integer and P,p € M,(C(X)) be non-zero projections such that p < P. Suppose that
rank P — rankp is at least 3(d + 1) at each x € X and a € pM,(C(X))p. Then, for any € > 0,
there exists an invertible element x € PM,(C(X))P such that

lla —z|| <e.

Proof. We first consider the case that X is a finite CW complex with dimension d. In this case,
by consider each summand separately, without loss of generality, we may assume that X is
connected. Let A = PM,(C(X))P and let k = rankp. Let ¢ € My(C(X)) for some large N
such that rankq = k +d + 1 and ¢ is trivial. By 6.10.3 of [I], p is unitarily equivalent to a
subprojection of ¢q. Thus, we find a projection ¢; € My (C(X)) with rank d + 1 such that p® ¢;
is trivial. Since rank(P — p) is at least 3(d + 1), by 6.10.3 of [I] , there exists a trivial projection
p1 € (P—p)M,(C(X))(P —p) with rank 2d+ 1 and ¢; is unitarily equivalent to a subprojection
of py. Therefore, we may assume that ¢; € (P — p)M,(C(X))(P — p).

Put B = (p+ ¢1)A(p + q1). Then B = My, 441(C(X)). Note that P — (p 4 ¢;) has rank at
least 2d 4 2. As above, find a trivial projection g2 € (P — (p + q1))A(P — (p + ¢1)) with rank at
least d + 1. Then, by 3.3 of [13], there is an invertible element z € (p + 1 + ¢2)A(p + ¢1 + ¢2)
such that

la — z|| <e€/2.

Define x = z+¢€/2(P—(p+qi1+¢1)). Then x is invertible in A and |ja—z|| < e. This proves the case
that X is a finite CW complex. In general, there exists a sequence finite CW complexes X,, with
dimension at most d such that C(X) = lim,_, C(X,) and M, (C(X)) = lim, . M, (C(X,)).
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Let ¢, : M, (C(X,,)) — M, (C (X)) be the homomorphism induced by the inductive limit system.
We may assume that ¢, is unital. There is, for some n > 1, Q,p’ € M,.(C(X,,)) such that

len(Q) — Pl < €/32, |lon(p’) —pll <€/32 and p' < Q

(see the proof of 2.7.2 of [23]). Moreover there is a unitary U € M, (C(X,,)) such that ||[U—1|| <
€/16 such that
Urp(QU = P.

We may also assume that there is b € QM,.(C(X,,))Q such that
l¢n (b) — al| < €/16.
Let b = p'bp’ € QM,.(C(X,,))Q. Then
ln (V) — all < e/8.
By what we have proved, there is an invertible element ¢ € QM, (C(X,,))Q such that
|0/ — || < e/4.

Note that A is a unital hereditary C*-subalgebra of M, (C'(X)). Put x = U*p, (b')U. Then z is
an invertible element in A. We also have

lla —z|| <e.

Theorem 5.2. Let A be a unital simple C*-algebra in C1. Then A has stable rank one.

Proof. We may assume that A is infinite dimensional. Let a € A be a nonzero element. We will
show that @ is a norm limit of invertible elements. So we may assume that a is not invertible
and ||a|| = 1. Since A is finite (4.9)), a is not one-sided invertible. Let ¢ > 0. By 3.2 of [49], there
is a zero divisor b € A such that

lla —b]| < /2. (e5.124)

We may further assume that ||b]| < 1. Therefore, by [49], there is a unitary u € A such that
ub is orthogonal to a non-zero positive element x € A. Put d = ub. Since A has (SP) (by [4.2),
there exists e € A such that de = ed = 0. Since A is also simple (for example, by 3.5.7 of [23]),
we may write e = e1 @ eo with ey < e;.

Note that d,es € (1—e1)A(1—e1) and (1—e1)A(1—e1) € C; (by[d.T]). Since (1—e3)A(1—e1)
is simple, there are x1,x9,...,x, € (1 —e1)A(1 — e1) such that

m
Z xrieoxr; = 1 —ey. (e5.125)
i=1

Let 6 > 0. Let F = {d, ez, 21,22, ..., Tm, T}, 25, ...,z }. There exists a projection p € (1 —
e1)A(1 — e1) and a unital C*-subalgebra C' C A with 1¢ = p and with C = PM,(C(X))P,
where r > 1 is an integer, X is a compact subset of a finite CW complex with dimension d(X)
and P € M,(C(X)) is a projection such that

lpz —zpl| < o for all x € F, (e5.126)

dist(pzp,C) < 6 for all z € F, (e5.127)
d(X)+1

M < 1/8(m + 1) for all ¢ eX and (e 5128)

S ( )

e5.129

(I1—e1—p) e2 S el
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With sufficiently small §, we may assume that
llea — (e + €5)|| < €/16 and ||d — (d1 + do)|| < €/16, (e5.130)
where €, € C and €} € (1 —e; —p)A(1 — e; — p) are nonzero projections, dy € (p —e})C(p — €})

and dy € (1 —e; —p)A(1 — eq — p). Moreover, there are y1,y2, ..., ym € C such that

m
1" yreby — pl| < e/16. (€5.131)
i=1

By (e5.129)), there is a partial isometry v € A such that v*v =1 —e; — p and vv* < e;. Put
el = v and d) = (¢/8)(e1 — €}) + (¢/8)v + (¢/8)v* + da.
Then (¢/8)v+ (¢/8)v* 4 da has a matrix decomposition in (€] +(1—e; —p))A(e) +(1—e1 —p)) :
(e )
€/8 dg )’
It follows that df is invertible in (1 — p)A(1 — p). Note also
ldo — db|| < €/8. (e5.132)

In C, we have dyef, = ehd; = 0. It follows from (e5.I31)) and (e5.128)) that €, has rank at least

rankP(z)/m > 8d(X) + 1. (e5.133)
It follows from [5.1] that there exists an invertible element di € C such that

ld1 — di|| < €/16.

Therefore d’ = d} + df is invertible in A. However,

ld—(dy +d3)ll < [[(d—(di +da)|| + [ldi — dy | + [|d2 — ds]] (e5.134)
< ¢/16+¢/16 4+ ¢/8 = ¢/4. (5.135)
Thus
|6 —u*d|| = |u*u(d — u*d)|| = |[ub—d'| = ||d — d|| < e/4. (5.136)
Finally
la —u*d| < |la—0b| +||b—u*d| <e/2+€/4 <e (5.137)
Note that u*d’ is invertible. O

Some version of the following is known. The relation of ¢ and €2/2° in the statement is not
sharp but will be needed in the proof of

Lemma 5.3. Let A be a C*-algebra, a € Ay with 0 <a <1 and let p € A be a projection. Let
1>e€e>0. Then

fe(a) S fe o (pap + (1 — pla(l —p)). (€5.138)
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Proof. We will work in M5(A) and identify A with eq; Ma(A)ei1, where {e; ;}i<i j<2 is a matrix
unit for Ms.

1/2
_ pa 0
Let z = <(1 —p)a1/2 0) . Then,
. (a0 «_( pap pa(l —p)
:El‘—(o 0> and zx _<(1—p)ap (1= p)ai—p))- (5.139)

We compute that

(1 = fe2 o0 (pap))pap|| < €*/28, (¢5.140)
1(1 = feza0 (1 = p)a(1 = p)))(1 = pla(l —p) — (1 = p)a(l — p)|| < €/2°. (e5.141)

Moreover,
(1 = fezyo (pap))pa’ || = ||(1 = fezya0 (pap))pap(1 — fez oo (pap))|| < €/2%.  (e5.142)
Therefore
(1 = fez 20 (pap))pa(l —p)|| < €/2". (e5.143)
Similarly
(1 = fezpoo (1 = pa(1 = p))(1 = plapl| < e/2*. (e5.144)
Put b = diag(pap, (1 — p)a(l — p)). Then
[z — fezjo0 (b)za™ fe2 64 (D) < €/2 (e5.145)
It follows from Lemma 2.2 of [50] that

fe(zz™) < f52/29 (b)ﬂjﬂj*fEQ/gg (b) < f52/29 (b) (e5.146)
(e5.147)

This implies that, in A,
fe(a) S feypo(pap + (1 — p)a(l — p)).

The following is a standard compactness fact. We include here for convenience.

Lemma 5.4. Let X be a compact metric space and g € C(X) with 0 < g(z) <1 for all z € X.
Suppose that fo is a lower-semi continuous function on X such that 1 > fo(z) > g(z) for all
x € X. Suppose also that f, € C(X) is a sequence of continuous functions with f,(x) > 0 for
alz € X, fo(x) < fag1(x) for all x and n, and lim,_,« frn(x) = fo(x) for all z € X. Then there
is N > 1 such that

fn(z) > g(x) for all ze X (e5.148)

and for alln > N.
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Proof. For each x € X, there exists N(z) > 1 such that
fu(z) > g(x) for all n > N(x). (e5.149)
Since fy(y) — g is continuous, there is §(x) > 0 such that

@ () > g(y) for all y € B(z,d(z)). (e5.150)

Then Uyex B(z,d(x)) D X. There are z1, 2, ...,y € X such that U™, B(x;,0(z;)) DO X. Let
N = max{N(z1), N(z2), ..., N(,)}. Then, if n > N, for any = € X, there exists i such that
x € B(x;,6(x;)). Then

fal2) Z @) () 2 9(@). (e5.151)
U

Theorem 5.5. If A is a unital simple C*-algebra in C1, then A has the strict comparison for
positive elements in the following sense: If a,b € A, and

d-(a) < d;(b) for all T € T(A),

then a < b, where d-(a) = lime_07(fc(a)).

Proof. Let a, b € A4 be two non-zero elements such that
d-(a) < d;(b) for all 7 € T(A). (e5.152)

For convenience, we assume that |al|,[[b]| = 1. Let 1/2 > € > 0. Put ¢ = f/15(a). If ¢ is Cuntz
equivalent to a, then zero is an isolated point in sp(a). So, a is Cuntz equivalent to a projection.
Then d(a) is continuous on T'(A). Since d-(b) is lower-semi continuous on 7'(A), the inequality

(e5.152) implies that
ro = inf{d;(b) —d;(c) : T € T(A)} > 0. (5.153)
Otherwise, there is a nonzero element ¢’ € aAa, such that ¢'c = c¢’ = 0. Therefore
inf{d(a) —d.(c) : 7€ T(A)} > 0. (e5.154)

So in either way, (e5.153]) holds.
Put ¢1 = fc/64(a). It follows from [5.4] that there is 1 > §; > 0 such that

7(fs, (b)) > 7(c) > dr(c1) for all 7€ T(A). (e5.155)
Put b; = f5,(b). Then
r=inf{r(b1) —d;(c1) : 7€ T(A)} > inf{7(by) —7(c) : T € T(A)} > 0. (€5.156)

Note that ||b|| = 1. Since A is simple and has (SP) (by [£.2]), there is a non-zero projection e € A
such that bje = e and

7(e) <r/8 for all 7€ T(A). (5.157)

Let r1 = inf{7(e) : 7 € T(A)}. Note that, since A is simple and T(A) is compact, 1 > 0. Let
by = (1 — e)b1(1 — e). Thus, there is 0 < d2 < 6;/2 < 1/2 such that

7r/8 < inf{7(fs,(b2) — T(c1) : T € T(A)} <r—ry. (e5.158)
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Since fs,(b2) f3/a(b2) = f3/4(b2) and since f3,4(b2)Af3/4(b2) is non-zero, there is a non-zero

projection e; € A such that e; fs,(b2) = e; with 7(e1) < r/18 for all 7 € T'(A).
There are x1, 3, ..., T, € A such that

m

*
E r;e1x; = 1.
i=1

Let 0 = min{e?/2'7(m + 1),6,/8,71/27(m + 1)}.
By [8], there are 21, 29, ..., 25 € A and V' € Ay such that

K K
| fe2jor2(c) — Zz;sz <o/4 and | fs,(b2) — (b +e1 + szz;H < o/4.

J=1 J=1

Let

F={a,b,c,e,c1,b,b ey U {ms,zf 1 1 <i<mpuU{z,z:1<j< K}

(e5.159)

(e5.160)

Since A € Cq, for any n > 0, there exists a projection p € A, a C*-subalgebra C C A with
1¢ = p and with the form C = PM,(C(X))P, where r > 1 is an integer, X is a compact subset
of a finite CW complex with dimension d(X) and P € M,(C(X)) is a projection such that

lpx —zp|| < n for all z € F,
dist(pzp,C) < n for all x € F
d(X) +1
_— 1/256 1) f 1 X and
rankP(E) < 1/256(m +1) for all £ € X an
1—-p < e

(e5.161
(5.162
(
(

)
)
e5.163)
)

€5.164

By choosing sufficiently small 7, we obtain bs, co,b” € Cy, a projection q1 € C, y1,Y2, .-, Ym € C,

21,2, ...,z € C such that

||pcp - CQH <o, Hf€2/214(p6p) - f62/214(62)” <o,
[pbap — ba|| < 7, || fs,(pb2p) — f5,(b3)I| < &, || f5,/a(Pb2p) — fo,74(b3)]| < 0.

m
lpeip — qif| <o, | nyfhyi —pll <o

i=1
and, (using (€5.160)), such that
K
| fe2jo1a(ca) — Z(z;)*ng <o and

j=1

K

I £5,(b3) = O 25(2)" + @1 + V)| < o
j=1

Note that, by (e5.167) and (e5.163),
rank(q1)(§) > rankP(§)/m > 256(d(X) + 1) for all £ € X.

Therefore

t(q1) > 1/m for all t € T(C).
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It follows that

t(q1) — 20 > 9(d(X) 4+ 1)/m for all t € T(C). (€5.172)
Therefore, by (e5.163),

K
di(fezjms(e2) + 9A(X) /m < t(ferpmi(ca)) < o+ Y H((2})"25) +9d(X)/m (e5.173)
j=1

= o+ 9d(X)/m + EK: t(25(25)") (e5.174)
) j=1
< (tHa) — o)+ Y H(E)") (€5.175)
j=1
< t(f5,(b3)) < di(fs5,/2(b3)) (e5.176)
for all t € T(C). It follows from by 3.15 of [53]
feeyma(c2) S fs,2(b2) (e5.177)
By (e5.166]) and Lemma 2.2 of [50],
f51/2(b3) < fs5,/4(pbap) < pbap. (e5.178)
By (e5.163),
fe2jan(pep) S fe2jor2(c2) < phap. (e5.179)
It follows from 53] and (e5.179) that
fepple) S feppu(pep+ (1 —p)e(l —p)) S fezjor(pep) & (1 — p) (e5.180)
S phapteSbateSbi S0 (e5.181)
We also have
fela) S fepa(fepr6(@)) = fepalc) S0 (e5.182)

Since this holds for all 1 > e > 0, by 2.4 of [50], we conclude that
a < b.
[l

Theorem 5.6. If A is a unital separable simple C*-algebra in Cy, then Ko(A) is weakly unper-
forated Riesz group.

Proof. Note that, for each integer n > 1, by 4, M, (A) € Cy. Suppose that p, ¢ € M, (A) are
two projections such that

7(p) > 7(q) for all T € T(A). (e5.183)

Then, by B8] g < p. Therefore, if x € Ky(A) with nz > 0 for some integer n > 1, then one
may write z = [p] — [g] for some projections p,q € My (A) for some integer k > 1. The fact that
nx > 0 implies that

n(r(p) —7(q)) >0 for all 7€ T(A) (e5.184)
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which implies that
7(p) > 7(q) for all 7€ T(A). (€5.185)

It follows that [p] > [g]. So > 0. This shows that K(A) is weakly unperforated.
To show that Ky(A) is a Riesz group, let ¢ < p be two projections in M, (A) such that
p = p1 + p2, where p; and py are two mutually orthogonal projections in M, (A). We need
to show that there are projections qi1,q2 € M,(A) such that ¢ = ¢1 + ¢2 and [¢1] < [p1] and
[g2] < [p2]. Since, by @4l M,,(A) € Cy, to simplify the notation, we may assume that p,q € A.
Since q < ¢, we may assume that

7(p) > 7(q) for all T € T(A). (e5.186)

Therefore, (since A is simple and has (SP)), we obtain two non-zero projections pp1 < p; and
Po,2 < p2, and another non-zero projection epy € A such that

7(p') > 7(q) + 7(eop) for all T € T(A), (e5.187)

where p' = p —po1 — po2. Put p} = p1 —po1 and ph = pa — po 2. So p’ = p) + p,. From what has
been proved, we have

q@eo Sp = pi+ph (e5.188)
Let v € A such that
v*v =p+ego and vv* < pj + ph. (€5.189)
There are
L1,X25 ey Ty sy Y15,Y25 ooos Ymg s 15 22, '-'7Zm3 S A
such that
mi m2 m3
foeo,omi = 1,nyp'1y,~ =1 and szpézi = 1. (€5.190)
i=1 i=1 i=1
Let
Fo=A{ziyj oz : 1 <i<my, 1 <j<mg, 1 <k<ms}.
Define

F = {p7q7p,17p,276007’07v*} U]:O-

Fixn > 0. Since A € Cy, there exists a projection e € A, a C*-subalgebra C' = PM,.(C(X))P €
Iy, with 1¢ = e such that

llex —xe|| < n for all x € F, (e5.191)

dist(exe,C) < n for all x € F, (€5.192)
E+1 1

f 1 X and 5.193

rank P () < 64(m1 +mo +mg + 1) or all £€ X an (e )

l—e S poa- (€5.194)

With sufficiently small 7, we may assume that there exist projections p”, pY, p3, ¢, ey € C, there
are x;,y:, 2, € C (1 <4 <mq, 1 <j < mgand 1l <k < mg3) and there are projections
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q",po € (1 —e)A(1 — e) such that

lep’e —p"|| < 1/16, ||} — eplel < 1/16, (e5.195)
Il — ephell < 1/16, |lg" — eqell < 1/16, (€5.196)
lg" — (1 —e)a(l —e)|l <1/16, [Ipo — (1 —e)p(1 —e)ll < 1/16, (€5.197)
mi
P’ =pi +py, and || (a]) ehor; — el < 1/16, (e5.198)
i=1
mo m3
1)) Phy; —ell < 1/16 and || > _(21)"phst, — ell < 1/16. (e5.199)
j=1 k=1
Moreover,
qd ®eg Jp” in My(C). (e5.200)
Note that
rank(ego)(z) > rank(P(z))/m1 > 64(k + 1), (e5.201)
rank(p})(z) > 64(k + 1) and rank(ph)(z) > 64(k + 1) (5.202)

for all z € X. Suppose that X is the disjoint union of compact subsets X1, X3, ..., X such that
rank(eqp), rank(p}) and rank(ph) are all constant on each X;, ¢ = 1,2,..., N. On each X;, there
are non-negative integers mq 1,mg 2, m1, and my such that

rank(q/) —k=mg1+ mo2, (e5.203)
rank(p)) = m}, rank(ph) = mb, (e5.204)
m} — 10k > mo 1, mby — 10k > mo 2. (e5.205)

It follows from 6.10.3 of [1] that ¢'|x, has a trivial subprojection q; ; < ¢'|x, such that rank(q; ;) =
mo,1. Thus, by 6.10.3 of [1I,

¢ S Pl (e5.206)
Now
rankq'|x, — g1 ; + 9k < mg = rank(ph|x,). (€5.207)
It follows from 6.10.3 of [I] again that
dIx; — 41 S plx; (e5.208)
Define projections ¢}, ¢5 € C such that
ailx; = di; and galx; = d'|x; — a1 (€5.209)
i1=1,2,...,N. Then
¢ =di+q and q; $pi and g5 S ph. (€5.210)
Note, from (51961 ), pf < pj and pfj < ph. We also have

¢" < (1—e) Spo (e5.211)
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Put ¢f = ¢" + ¢|. Then

¢ S poy+ 1) =p1 (e5.212)
By (e5.196]) and (e5.197)), there exists a unitary v € A such that
v (¢" + ¢ =q (e5.213)
Define
g =v*(¢" + ¢/ )v and g2 = v*(gh)v. (e5.214)

Then ¢ = ¢1 + go. But we also have
@1 Sq"+aql Spand ¢ S gh S ph < po. (e5.215)

This ends the proof.
O

Proposition 5.7. Let A be a unital simple C*-algebra in C1. Then, for any non-zero projections
p and q, and any integer n > 1, there are mutually orthogonal projections pi,p2, ..., Pn,Pntl €

pAp such that
n+1

p= Zpi, [pi] =[p1], i=1,2,...n,
i=1

Prnt1 SP1and ppi1 S q.

Proof. There are vy, vs, ...,vx € Mg (A) and a projection p’ € A such that
K
vap’vi =1 and p' <p. (e5.216)
i=1

Let n = inf{r(q) : 7 € T(A)}. Choose an integer m > 1 such that 1/m < n/2.

Let 1/2 > 6 > 0 and F = {p,p/,v;,vf,1 < i < K}. Since A is in Cy, there is a projection
e € A and a C*-subalgebra C' C A with 1¢ = e such that C = PM,(C(X))P, where r > 1 is an
integer, X is a compact subset of a finite CW complex with dimension k& and P € M, (C(X)) is
a projection, and

llex — ze|| < 9§, dist(exe,C) < ¢ for all x € F, (€5.217)

k41 1
rank(P(E)) < Tt DE LD for all £ € X and (e5.218)
7(1 —e) < min{n/2,1/8(nmK +2)} for all 7 € T(A). (e5.219)

With sufficiently small §, we may assume that there are projections €/, €] € C such that

llepe — €'|| < 1/16, ||(1 —e)p(1 —e) — (1 —€')|| < 1/16, (€5.220)
lep’e — e1]] < 1/16 and (e5.221)
Krank(€'(£)) > rank(P(€)) for all £ € X (e5.222)

It follows from (e5.218)) that

rank(e’(£)) > 4m(n + 1)(k + 1) for all £ € X. (€5.223)
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There is a trivial projection €’ < €’ in PM,(C(X))P such that
rank(e”(€)) > (4m(n+1) — 1)(k +1) and rank(e’ —€”)(&) <k +1 (e5.224)

for all £ € X. It follows that there are mutually orthogonal and mutually equivalent projections
Py Dby ..y Pl € C such that

Zpé <eé’ and (n+1)[p}] > [¢"]. (e5.225)
i=1
and ¢’ — > | p! has rank less than n. This implies that
(p)) > 1 — ") +7(1 =€) for all 7€ T(A). (e5.226)
Put p;, ; =¢ —€”+ (1 —¢€). Then
n+1

o) = 1> pil. (e5.227)
i=1

Therefore there are mutually orthogonal projections pi,pa, ..., pnt1 € €Ae such that

n+1
p= Zpi and [p;] = [pi], i=1,2,...,n+ 1. (e5.228)
i=1
Note that
Phi1] < gl and [pl4q] < [p1].
[l
6 Traces

Proposition 6.1. Let A be a unital separable simple C*-algebra in Cy. For any positive numbers
{R,} such that lim,_,. R, = oo, there exists a sequence of C,, = PnMr(n)(C(Xn))Pn, where
r(n) > 1is an integer, X, is a finite CW complex with dimension k(n) and P, € M,,)(C(Xy))
is a projection, a sequence of projections p, € A, a sequence of contractive completely positive
linear maps Ly, : A — C,, and a sequence of unital homomorphisms hy : Cp, = ppAp, such that

li_)rn lla — [(1 = pp)a(l — pn) + hp o Ly(a)]l| =0 for all a € A (e6.229)
k(n) +1 1

m < R_n fO’I" all x € X, (e 6230)

li_>m sup{7(1 —p,) : 7€ QT(A)} =0 and (€6.231)

lim sup |[7(hyoLy(a)) —7(a)] =0 for all a € A. (e6.232)

N=00 LeQT(A)

Proof. Let {F,} C A be an increasing sequence of finite subsets whose union is dense in A.
Since A is in Cq, there exists a sequence of projections e, € A and a sequence of B, C A with
1p, = e, and B, = P, M, (C(X,))P,, where r,, > 1 is an integer, X,, is a compact subset of a
finite CW complex with dimension k(n) and P, € M, (C(X,)) is a projection, such that

lenz — zen|| < 1/27F2 for all z € Fp, (e6.233)
dist(e,zen, By) < 1/2"F2 for all z € Fp, (e6.234)
k(n)+1
—_— 1/R, f 11 X and 2
Tk (P, (@) < 1/R, for all £ € X an (€6.235)
(1 —e,) < 1/2" for all 7€ QT(A). (e6.236)
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For each x € F,, let y(z) € B,, such that
lenzen — y(x)|| < 1/27F2 (e6.237)

Since By, is amenable, it follows from Theorem 2.3.13 of [23] that there exists a unital contractive
completely positive linear map 1, : e, Ae, — B, such that

[on (y(x)) — idp, (y(x))]| < 1/2"+2 for all z € F,. (6.238)

Put G, = {y(z) : = € F,}. By Corollary 6.8 of [36], there exists C,, € Z*() with the form
Cn = QnM,.(C(Yy))Qn, where Y, is a finite CW complex,

min{rank Q,(y) : y € ¥,,} = min{rank P,,(z) : x € X, }. (€6.239)

and a unital 1/2""2-G,-multiplicative contractive completely positive linear map ¥/, : B, — Cp,
and a surjective homomorphism h,, : C,, — B,, such that

hn ot = idp, . (¢6.240)
Now define
Ln =9, 0. (e6.241)
It is ready to check that
nh—>H<;lo | Ly (ab) — Ly (a)Ly(b)]| =0 for all a, b e A. (€6.242)
By (6.233) and (6.234),
nh_)llolo |z — (enzen + (1 —en)x(l —ey))|| =0 for all z € A. (€6.243)

Since quasitraces are norm continuous (Corollary 1T 2.5 of [2]), by (€6.236)), it follows that

T(z) = li_)m T(enxen + (1 —ep)x(l —ep)) (€6.244)
= li_)m (T(enxen) +7((1 —en)x(l —ey))) (e6.245)
= li_)m (T(enxen)) (€6.246)
= li_)m T(hp o Ly(x)) (€6.247)

for all z € A} and all quasitraces 7 € QT(A). Also by (e6.235) and (e6.239)),
k(n)+1
—— < 1/R, f 1 Y.
rank O () < 1/R,, for all y €
O

Corollary 6.2. Let A be a unital separable simple C*-algebra in C1. Then, there exists a se-
quence of unital C*-algebra A, € TFM™  q unital sequence of contractive completely positive
linear maps Ly, : A — A, and a sequence of unital homomorphisms h, : A, — A such that

lim sup |7(hyoLy(a))—7(a)]=0 (e6.248)
N=00 LeQT(A)

for all a € A, and for each projection p € A, there exists a sequence of projection p, € A, such
that

lim ||L(p) — pnl = 0. (6.249)
n—00
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Note that the existence of projections p, € A, can be easily constructed from the construc-
tion in the proof of

Corollary 6.3. Let A be a unital simple C*-algebra in C1. Then every quasitrace extends a
trace.

Proof. Let 7 : Ay — Ry be a quasitrace in QT'(A). It is known that every quasitrace on A,
extends a trace. We will use the notation in the proof of 6.1l Thus T7oh,, is a trace. If z,y € AL,
then

Tohy(Ly(x4+y)) = 70hy(Ly(z)+ Ly(y)) (€6.250)
= 70 hy(Ly(x)) + 70 hy(Ly(y)). (e6.251)

So 7o hy o L, extends a state. Let t be a weak limit of {7 o L, p,}. By (€6.247)), t(x) = 7(x) for
all v € A, 0

In the following, if Q is a compact convex set, J.(2) is the set of extremal points of 2.

Theorem 6.4. Let A be a unital separable simple C*-algebra in C1. Then ra(0.(T(A)) =
0e(S(Ko(A)))-

Proof. Note that, by 6.3, T(A) = QT (A). It follows from 6.1 of [50] that r4 is surjective and
e (S(Ko(A))) Cra(0e(T(A))). We will prove that r4(0.(T(A))) C 0.(S(Ko(A))).
Suppose 7 € 0.(T(A)) and there are s1,s2 € S(Kp(A)) such that

TA(T) =1s1 + (1 — t)SQ

for some ¢t € (0,1). Suppose that s; # so. Then, since A € Cy, there is a projection p € A such
that

s1([p]) # sa2([p])- (€6.252)

Let A, € ZF™ L, and h, be as in In particular, there are projections p, € A, such
that

Tim[|Zn(p) = pal =0 and (€6.253)
Tim |7 (h(pn)) = 7'(p)| = 0 for all 7/ € T(A). (¢6.254)
Moreover,
Jim |7 (ha(1a,)) — 1| = 0 for all 7/ € T(A). (¢6.255)
For each n,
7(hn(q)) = ts1([hn(@)]) + (1 = t)s2([hn(q)]) (€6.256)

for all projections ¢ € A, ® K. Write A, = Cp1 @ Cp2 @ -+ @ C,, j(n), Where each C; =
PriMyn,5)(C(X0,i)) Py and X, ; is connected. Note that pc, ,(Ko(Cp,i)) = Z. We may assume
that h,(Cp i) # 0 (otherwise, we delete that summand). Therefore there are 0 < a4, 3,,; such
that

QAn ;T © hn|K0(Cn,i) = (s10 [hn])|KO(Cn,i) and (e6.257)
(52 0 [Pn]) | Ko(Cri)s (e6.258)

bn,iT © hn| Ko (Coi)
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i=1,2,...,k(n) and n =1,2,.... Since r4(7) = ts1 + (1 —t)sa2,

tan,iT © hn(]‘cnz) + (1 - t)bn,iT o hn(lc,“) (e 6259)
=tsy 0 [hn(lc,,]) + (1 —t)s2 0 [hu(lc, ,]) (€6.260)
=7(hn(1c,,))- (€6.261)
It follows that
tan; + (1 — t)bn,i =1. (e 6.262)

Note that

k(n) k(n)
> anit(ha(le,,)) = s1((hn(14,)]) and > by i7(hn(le,,)) = sa([hn(14,))).  (e6.263)
i=1 =1

Put
k(n) k(n)
an = Z an,iT(hn(1c,,;)) and b, = Z bniT(hn(1c,,))-
i=1 i=1
By (e6.259)),
lim a, =1 and lim b, = 1. (€6.264)
n—oo n—oo

Since s; and sg are states on Ko(A) and A is simple, a,, > 0 and b, > 0. Let m,; : A, = Cp;
be the projection map. Define

k(n)

)Y ani7 0 hylc,; © Ty and (6.265)
=1

| ko)

L2 _ (E) ; bniT © hulc, s © Tne (e6.266)

1

(n1) — (—
T (an

Therefore 7(™1Y) and 7(™?) are tracial states on A,. By (€6.262),

k(n) k(n)
T|h7L(A7L) = t(z a‘n,iT o hn|Cn71 o ﬂ-n,i) + (1 - t)(z bn,iT o hn|cn,7, 9} 7rn7i) (e 6267)
i=1 1=1

By the definition of L,,, (e6.254]), (6.264]), (e6.265]) and (e6.260]),

T(a) = nlLH;oT(h"OL"(a)) (e6.268)
= lim [tr D (L (a) 4+ (1 — )72 (L, (a))] (€6.269)

for all @ € A. Note that 7" o L,, is a state on A, i = 1,2. Let 7y and 7 be limit points of
{r(V o L} and {r(™? o L,}, respectively. One checks easily that both are tracial states of A.

By (e6.269),
T=trn+ (1—t)mn. (e6.270)
Since T € 0.(T(A)), this implies that

T =T =To. (€6.271)



On the other hand,

T1(p) = JLH;OT(n’i)(Ln(p)) = nh_}ngo s1([pn]) = s1([p]) and (€6.272)
ma(p) = lim 7" (Ln(p)) = lim sa([pn]) = s2([p)). (e6.273)

This contradicts the assumption that si([p]) # s2([p]). It follows that r4(7) € 0.(Ko(A4)). O
The following is a variation of Theorem 5.3 of [6].

Theorem 6.5. Let A be a unital separable simple C*-algebra in C1. Then the map W(A) =
V(A) ULAff,(T(A)).

Proof. Note that QT(A) = T(A). By Theorem 4.4 of [41] (see also Theorem 2.2 of [6] ), it
suffices to prove that the map from W (A) to V(A) U LAff,(T(A)) is surjective. The proof of
that is a slight modification of that of Theorem 5.3 of [6]. We also apply Lemma 5.2 in [6]. The
only difference is that, in the proof of Theorem 5.3 of [6], at the point 5.1 of [6] is used in the
proof, we use [6.1] instead. O

Corollary 6.6. Let A be a unital separable simple C*-algebra in Ci. Then A has 0-almost
divisible Cuntz semigroup (see definition 2.5 of [60] ).

Proof. Let a € My (A) and k > 1 be an integer. If (a) is represented by a projection p € M,,(A),
then by .7 since M,,(A) is in Cy, there is a projection p; € M,,(A) such that

klpi] < [p] < (B + 1)[pa]-

Now suppose that a can not be represented by a projection. Then, 6.5 (a) € LAff,(T'(A)). Note
that the function (a)/k € LAff,(T'(A)). It follows from that there is x € W(A) such that
x = (a)/k. Then

kx <{a) < (k+1)x.

0

Lemma 6.7. Let C' = lim,, oo (Chp, ¥p) be a unital C*-algebra such that each Cy, is a separable
unital amenable C*-algebra with T(C,) # 0 and each 1, is unital homomorphism. Let X
be a compact metric space and A : (0,1) — (0,1) be a non-decreasing map. Suppose that
v : C(X)— C is a contractive completely positive linear map and

Prop(Or) > A(r) for all 7€ T(C) (e6.274)

for all open balls O, with radius r > n for some n € (0,1/9).

Then, for any € > 0, any finite subset F C C(X), any finite subset G C C, there ezists an
integer n > 1, a unital contractive completely positive linear map L : C(X) — Cy, and a unital
contractive completely positive linear map r : C — C,, such that L =10 @,

|Un,co o L(f) —@(f)|| < € for all feF, (€6.275)
|[Ynooor(9) —gll < € for all f€G and (€6.276)
ttor,(Or) > A(r/3)/3 for all t € T(C) (€6.277)

for all v > 17n/8. Furthermore, if ¢ is €/2-F-multiplicative, we may also require that L is
e-F-multiplicative.
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Proof. Since each C), is amenable, by applying 2.3.13 of [23], there exists a sequence of contrac-
tive completely positive linear map r, : C' — C,, such that

lim [|¢n,00 0 7n(z) — 2| =0 for all z € C. (e6.278)

n—oo

Define L,, = r,0p, n = 1,2, .... Using the definition of inductive limits, for any sufficiently large
n, L, can be chosen as L and 7, can be chosen as r to satisfy (€6.275]) and (e6.270) as well
as the requirement that L is e-F-multiplicative, provided that ¢ is €/2-F-multiplicative. To see
that we can also find L so (e6.277)) holds, we will prove the following: for any integer k > 1,
there is an integer n > k such that, if f € C'(X) with 0 < f <1 and {z : f(x) = 1} contains an
open ball Og with radius s > 17n/8, then

toLy(f)> A(s/3)/3 for all t € T(Cy). (€6.279)

This will imply (e6.277)).
Otherwise, there is a sequence {k(n)} with lim, . k(n) = oo, there is t, € T(Cy(,)) and
sn € (17n/8,1/2) such that

t 0 Liny(fn) < A(s/3)/3 (€ 6.280)

for all n and for some f,, € C(X) with 0 < f < 1and {x: f,(x) = 1} contains an open ball with
radius s, > 17n/8. Note that {t, o ry,)} is a sequence of states of C. Let to be a weak limit
point of {t, o 1y, }. We may assume, that to(a) = limm—co ty(m) © Ti(n(m)) (@) for all a € C. By
passing to a subsequence, we may assume that s,(,,) — s, where s € [17/8,1/2].

Let x1,,...,7; be a set of finite points of X such that Ul_,O(x;,155/32) D X, where
O(x;,155/32) is the open ball with center z; and radius 15s/32. We may assume that 17s/16 >
Sn(m) > 15s/16 + 5/2%. Note that 30s/32 > 7. Denote by f; € C(X) with 0 < f < 1 and
filz) = 1if z € O(x;,155/32) and fi(x) = 0 if dist(z,2;) > 155/32 + 5/28, i = 1,2,...,1.

It follows that there are infinitely many f,,) such that f,.,) > f; for some j € {1,2,...,1}.
To simplify notation, by passing to a subsequence, we may assume, for all m, f,m,) > f;. By

(e 6.280),
tn(m) o Lk(n(m))(f]) < A(S/3)/3 (e 6.281)

One verifies (since C' = lim,,—00(Cp,v¥n)), by ([€6.270), to is a tracial state. It follows from
(e6274) that

to(f) > A(155/32) (¢6.282)

for all f € C(X) with 0 < f <1 and {x: f(z) = 1} contains an open ball Oy5,/30 With radius
15s/32. However, by (e6.281]),

to(f;) < A(s/3)/3. (€ 6.283)

A contradiction.
O

6.8. Let C(X) be a compact metric space. Suppose that ¢ : C(X) — A is a monomorphism.
Then there is an nondecreasing map A : (0,1) — (0,1) such that

Prop(Or) > A(r) (e6.284)

for all T € T(A) and all open balls with radius r > 0 (see 6.1 of [30]).
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The following statement can be easily proved by the argument used in the proof of and

that of (e6.232]) of 6.1l

Lemma 6.9. Let B be a class of unital separable amenable C*-algebra B with T(B) # (). Let A
be a unital separable simple C*-algebra which is tracially B. Let X be a compact metric space,
Suppose that ¢ : C(X) — A is a unital monomorphism with

Prop(Or) > A(r) for all 7€ T(A) (e6.285)

and for all open balls with radius r > 0. Then, for any a € Ay \ {0}, anyn > 0, 6 > 0 and
any finite subset G C C(X), there exists a projection p € A, a unital C*-subalgebra B € B with
1p = p and a unital 5-G-multiplicative contractive completely positive linear map ® : C(X) — B
such that

Ipp(x) —p(2)p|| <9 for all x € G, (6.286)
lpe(x)p — ®(z)|| < § for all x € G and (e6.287)
trow(Or) > A(r/3)/3 for all 7 € T(B) (e6.288)

and for all opens balls O, with radius r > 7.

7 The unitary group

Definition 7.1. For each integer d > 1, let K(d) be an integer associated with d given by
Lemma 3.4 of [42]. It should be noted (from the proof of Lemma 3.4 of [42]), or by choosing
even large K (d), applying [45]) that, if K > K(d), then, for any compact metric space X with
covering dimension d, any projection p € My (C(X)) (for some integer N > K) with rank p at
least K at each point z and any unitary u € Uy(pMyC(X))p), there are selfadjoint elements
hi,ho, hs € (pMpy(C(X))p) such that

[|[u — exp(ih1) exp(iha) exp(ihs)|| < 1.
Let g(d) = K(d) for all d € N. Put C11 =Cy.

Proposition 7.2. Let A be a unital simple C*-algebra in Cy 1 and let u € Uy(A). Then, for any
€ > 0, there are four unitaries ug, uy,us,us € A, such that uy,us,us are exponentials and ug is
a unitary with cel(ug) < 27 such that

|lu — upurugusugl| < €/2. (e7.289)
Moreover, cer(A) <6+ e.

Proof. Let u € Uy(A). Then, for any 7/4 > € > 0, there are unitaries vy, va, ..., v, € U(A) such
that

vy =u, v, =1 and |lviy1 — vl <€/16, i=1,2,...,n. (e7.290)

Since A is simple and has (SP), there are mutually orthogonal and mutually equivalent non-
zero projections qi,qg, ..., 4n+1) € A. For each integer d > 1, let K (d) be an integer given by
[[Il Since A € Cy, there exists a projection p € A and a C*-subalgebra C' = PM,(C(X))P,
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where r > 1 is an integer, X is a compact subset of a d(X) dimensional CW complex and
P e M,(C(X)) is a projection such that

lpvi —vipl| < €/128, i=1,2,...,n (e7.291)
dist(pup,C) < €/128, i=1,2,...,n (e7.292)
% < 64;(1(d) for all x € X and (€7.293)
1-p < q. (€7.294)
There are unitaries w; € (1 —p)A(1 — p) with wp = (1 — p) such that
|lw; — (1 = p)vi(1 —p)|| <€/16, i=1,2,...,n. (€7.295)
Furthermore, there is a unitary z € C' such that
|z — pup|| < €/16 (€7.296)
Therefore
lu— (w1 & 2)|| <¢€/8. (e7.297)

Put z; = wy + p. Since 1 — p < g1, by Lemma 6.4 of [29], cel(z1) < 27 + €¢/4. By the choice of
K(d) (see[T]), there are three self-adjoint elements hq, ho, hs € B such that

|z — exp(ihy) exp(ihg) exp(ihs)|| < 1. (€7.298)
Let u; = exp(ih;) + (1 —p), j = 1,2,3. Then,
llu — z1ugugus|| < 1+ €¢/4 (e7.299)
Moreover, since cel(z1) < 2w + €/4, there is a unitary ug such that cel(up) < 27 and
lluo — 21| < €/2.

It follows that cer(A4) <6+ e.
O

Theorem 7.3. Let A be a unital simple C*-algebra in Cy 1. Suppose that u € CU(A). Then,
u € Uy(A) and

cel(u) < 8. (€7.300)

Proof. Since u € CU(A), it is easy to show that [u] = 0 in K;(A). It follows from that A
has stable rank one. Therefore u € Uy(A). Now let A = cel(u). Let € > 0. Choose an integer
K > 1 such that (A +1)/K; < ¢/4. There exists a unitary v € Uy(A) which is a finite product
of commutators such that

|lu —v|| < €/16. (e7.301)

Fix a finite subset F C A which contains v and v and among other elements. Let § > 0.
Since A is in Cy1, there is a projection p € A and C*-subalgebra C' C A with 1¢ = p and
C = PM,(X)P, where X is a compact subset of a finite CW complex with dimension d, r > 1
is an integer, P € M,(X) is a projection with

rankP(§) > K(d) for all £ € X, (e7.302)

35



where K (d) is the integer given by Lemma 3.4 of [42], such that

lpx — zp|| < § for all z € F, (€7.303)
dist(pzp, C) < €/16 for all x € F and (€7.304)

(K1 + 11 —p| < [p]

By choosing sufficiently large F and sufficiently small §, we obtain unitaries u; € (1 —p)A(1—p)
and a unitary v; € Up(C) which is a finite product of commutators of unitaries in C such that

lu — (u1 +v1)]| < €/8 and (e7.305)
cel(u1) <A+1 (in (1 —p)A(l —p)). (€7.306)

Write w = u; + p. It follows from 6.4 of [29] that
cel(w) < 27 + €/4. (€7.307)

Since v1 € Up(A) is a finite product of commutators of unitaries in C, by the choice of K(d) and
by applying 3.4 of [42],

cel(vy) < 67 +¢/8 (7.308)
(in C). Thus
cel(v + (1 —p)) < 61 +¢/4. (€7.309)
It follows from (e7.305]), (e7.307) and (e7.309) that
cel(u; +v1) < 2w +€/4 + 6 + €/4. (e7.310)
By (eZ.303),

cel(u) < (e/16)m + 87 +€/2 < 87 + €.
O

Theorem 7.4. Let A be a unital simple C*-algebra in C11 and let k > 1 be an integer. Suppose
that u,v € U(A) such that [u] = [v] in K1(A),

u®, oF € Up(A) and cel((u)*o*) < L (e7.311)
for some L > 0. Then
cel(u*v) < L/k + 8. (€7.312)
Proof. Suppose that
R(u) R(v)
uv—Hesza]) and ( ky —Hexpzb
j=1

where a;, by, € A, . Since cel((u*)*v*) < L, we may assume that > ||b|| < L (see [48]). Let
M =3, |laj||. In particular, cel(u*v) < M
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Let € > 0. Let 6 > 0 be such that % < WGLH) Let n > 0. Since A € Cy,1, there exists a

projection p € A and a C*-subalgebra C € Z;, where C' = PM,(C(X))P and 1¢ = p such that

lu —up ®ui]| <n and ||v— vy ® v1]| <, (e7.313)

up,vp € U((1 — p)A(1 —p)), ui,v; € U(C), (e7.314)
R(u) R(v)

ugvo = [ ] explipa;p), (ui)vf = [] exp(ib,,), (e7.315)
j=1 m=1

_dFl min{27? /e, d/K(d) + 1} for all z € X; (e7.316)

rankP(z) — ’ ’

T(1—p) < ¢ for all 7€ T(A), (e7.317)

where 0], € Cs,. and ||b],|| < L + €/4.
Note that rankP is a continuous function on X.
It follows from 3.3 (1) of [42] that there exists a € Cs 4. with ||a]| < L + €/4 such that

det(exp(ia)(u})foF) =1 ( for all z € X). (e7.318)
Therefore
det((exp(ia/k)ujv)¥) =1 for all z € X. (e7.319)
It follows that
det(exp(ia/k)ujvy)(z) = exp(i2l(x)n/k) for all z € X (e7.320)

for some continuous function /(z) on X with /(z) being an integer. Since X is compact, I(z) has
only finitely many values. We may choose these values among 0, 1, ..., k—1. Let f(z) = —2l(z)n/k
for £ € X. Then f € C(X)sq and || f|| < 27. Note that exp(if/rankP) - 1¢ commutes with
exp(ia/k) and

exp(i(f/rankP(z)) - 1¢) exp(ia/k) = exp((i((f/rankP(x)) + a/k)). (e7.321)
We have that
det(exp(i(f/rankP(z) + a/k))ujvi) = 1. (€7.322)
It follows from 3.4 of [42] that
cel(uivy) < 2m/(272€) + (L + €/4) [k + 6. (e7.323)
By applying Lemma 6.4 of [29],
cel((up @ p)*(vo ®p)) < 27 + /2. (7.324)
It follows that, with sufficiently small 7,
cel(u™v) < 2w +¢€/2+¢/m + L/k + ¢/4k + 67. (e7.325)

The lemma follows.
O

Theorem 7.5. Let A be a unital infinite dimensional simple C*-algebra in Cy. Then Uy(A)/CU(A)
s a torsion free and divisible group.
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Proof. We have shown that A has stable rank one. Therefore, by Thomsen’s result ([52]),
Up(A)/CU(A) = AfF(T'(A))/pa(Ko(A)). In particular, Uy(A)/CU(A) is divisible. To show that
it is torsion free, we assume that @ € Aff(T(A))/pa(Ko(A)) such that kx = 0 for some integer
k> 1. Let y € Aff(T(A)) such that § = x in the quotient. So ky € pa(Ky(A)).

Let € > 0. There is an element z € Ky(A) such that

sup |ky(7) — pa(2)(7)| < €/2. (e7.326)
TeT(A)

We may assume that z = [p|] — [¢], where p,q € M, (A) are two projections for some integer
n > 1. By (SP), there is a non-zero projection e € A such that 7(e) < ¢/4k for all 7 € T(A). It
follows from [5.7] that there are mutually orthogonal projections p1,p, ..., pr+1 € pMy(A)p and
mutually orthogonal projections g1, q2, ..., gx+1 € ¢My(A)q such that

prs1] < lel, [p1] = [pi], i=1,2,....k, and (7.327)
1] <el, [@1] =[], i =1,2,..., k. (e7.328)

Then, by (e7.320)),
sup |y(7) — pa([p1] — [@1])(7)| < €/2k + €/4k < e. (e7.329)

TET(A)

It follows that y € pa(Ko(A)). This implies that © = 0. Therefore that Uy(A)/CU(A) is torsion
free.
O

Theorem 7.6. Let A be a unital simple C*-algebra with stable rank one and let e € A be a non-
zero projection. Then the map u — u+ (1 —e) induces an isomorphism from U(eAe)/CU (eAe)
onto U(A)/CU(A).

Proof. Note, by the assumption that A has stable rank one, CU(eAe) C Uy(eAe) and CU(A) C
Up(A). We define a map Aff(T'(eAe)) to Aff(T'(A)) as follows. Let Ap : Bs, — Aff(T(B)) by
Ap(b)(T) =b(7) for all T € T(B) and b € By, where b € B and B is a C*-algebra. By [8], we
will identify Aff(T(A)) with Ag(Asq.) and Aff(T(ede)) with Acac((eAe)s.q.).

Define v : Aff(T'(eAe)) — Aff(A) by v(a)(1) = 7(a) for all 7 € T(A) and a € (eAe)s.q.-
Clearly 7 is homomorphism. Since A is simple, v maps peae(Ko(A4)) into pa(Ko(A)). Hence it
induces a homomorphism

7+ Af(T(eAe))/peac(Ko(A)) — AfE(T(A))/pa(Ko(A)).

Since A is simple, ¥ is injective.
To see it is also surjective, let h € A, . Since A is simple, there is an integer K > 1 such
that

N[la] > Kle] > [L4] (e7.330)

for some integer N. Then, there is a partial isometry U € My (A) such that

K
U'U =14 and UU* < diag(e, e, ..., €). (e7.331)

K
Let E = diag(e, e, ...,€). We will identify EMy(A)E with Mg (eAe). Write URU* = (h; ;), a
K x K matrix in Mg (eAe). Write h = hy — h_ and hy = (hj]) and h_ = (h; ;).
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It is known (see 2.2.2 of [23], for example) that there are hy = (hz”) and h—p = (hy; ),

k=1,2,...,n and 1,22, ..., Tn, Y1, Y2, ---, Yn € Mg (eAe) (for some integer n > 1) such that

he =Y hip ho=Y h_p, (e7.332)
k=1 k=1

Tpxp = hy g, Ty = Z h;m— (e7.333)
j=1

Ypyk = h_ 1 and yry; = Z My i i (e7.334)
j=1

Note b= >}, zxxy — > p_q Ykyy € eAe. We have
7(b) = 7(hy —h_) =7(h) for all 7€ T(A). (e7.335)

It follows that 7 is surjective. From this and by a theorem of Thomsen ([52]), the map u +—
u+ (1 —e) is an isomorphism from Uy(eAe)/CU (eAe) onto Uy(A)/CU(A). Since A has stable
rank one, U(ede)/Uy(ede) = U(A)/Uy(A). It follows that u — u + (1 — e) is an isomorphism
from U(eAe)/CU (eAe) onto U(A)/Uy(A). O

Lemma 7.7. Let K > 1 be an integer. Let A be a unital simple C*-algebra, let e € A be a
projection, let u € Uy(eAe) and let w = u+ (1 — e). Suppose that n > 0,

dist(w,1) < n (e7.336)

K—1
and 1 — e < diag(e, e, ..., €). Then, if n < 2,

distesc(u, €) < Kmn; (e7.337)
If furthermore, A € Cy 1, then
celese(u) < Kn+ 8. (e7.338)
If n =2 and A € Cy1, then
celege(u) < Kcel(w) + 8. (e7.339)

Proof. We first consider the case that 77 < 2. Let ¢ > 0 such that n+ ¢ < 2. There is w; € U(A)
such that w7y = w and

lwi — 1| <n+e/2<2. (e7.340)

Thus there is h € A, , such that

wy = exp(ih) and ||h|| < 2arcsin (e7.341)

2
(M) <7
2

It follows that

|lwi — 1| = [[exp(ih) — 1| = |exp(il[h]) — 1]. (e7.342)
Since

K—1
1 —e < diag(e,e, ..., €),
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we may view h as an element in Mg (eAe) (see the proof of [[.4]). It follows from [T.6] that there
is f € Aff(T'(eAe)) such that f(7) = 7(h) for all T € T'(eAe). Note that 7(h) = (1 @ Trg)(h) for
7 € T'(eAe). Since A is simple, by [8] (see also 9.3 of [29]), there exists a € (eAe)s . such that

7(a) = f(7) for all 7 € T(eAe) and |la| < | f|l+ (e7.343)

for some 6 > 0 such that

2K arcsin(n + 6/2) +0 < 2K arcsin(?7 ;_ 6). (e7.344)
It follows that
Ay (exp(ia)(u* + (1 —e)) = 0. (e7.345)
Note that
(1 —e)(exp(ia)u*) = (exp(ia)u*)(1 —e) =1 —e and (e7.346)
eexp(ia) = exp(ia)e = e + i (ZZRk (e7.347)
Therefore
Acae(eexp(ia)u™) = 0. (e7.348)
Thus, by [52],
eexp(ia) =T in UleAe)/CU(eAe). (e7.349)
Note that
llal < |Ifll +5§8up{% T eT(A)} +¢/2 (e7.350)
< Kl|h| + 6 < K(2arcsin(” ; Y. (7.351)
If
K(2 arcsin(g)) <,
K(23urcsin(77 - E) <m
for some € > 0. In this case, we compute that
lexp(ia) — 1| = [[exp(illa]) — 1| < K(n +€). (e7.352)
It follows that
dist(u,e) < K(n+¢€) (e7.353)
for all € > 0. Therefore
dist(@,€) < Kn. (e7.354)
Otherwise, if Kn > 2, we certainly have
dist(u,e) <2 < Kn. (e7.355)
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Now we assume that A € C 1. If n < 2, by (eZ.350) and by [Z.3]
celege(u) < K(n+€) + 8w (€7.356)
for all € > 0. It follows that
celege(u) < Kn+ 8n (e7.357)

If n = 2, choose R = [cel(w)] + 1. Thus % < 1. There is a projection €' € Mp41(A) such
that

[(1—e)+¢]=(K+ RK)[e]. (e7.358)
It follows from 3.1 of [33] that
dist(n T (1 —e) 70,15 ¢) < W) (e7.359)
’ R+1° '
Put K1 = K(R+ 1). Then, from what we have proved,
celw) < K<y g (e 7.360)
™ :
= "NR11
= Kecel(w) + 8. (e7.361)
[l

8 Z-stability

Definition 8.1. Let A be a unital separable C*-algebra. We say A has finite weak tracial nuclear
dimension if the following holds: For any ¢ > 0, ¢ > 0, and any finite subset F C A, there exists
a projection p € A and a unital C*-subalgebra B with 1 = p and with dim,,.B = m < oo
satisfying the following:

lpx —xp|| < € for all z € F, (e8.362)
dim(pzp, B) < € for all z € F, (e8.363)
7(l—p) < o for all 7 € T(A) and T(A) # 0. (e8.364)

The following is a based on a result of Winter ([60]).

Lemma 8.2. Let A be a unital separable simple infinite dimensional C*-algebra which has finite
weak tracial nuclear dimension. Suppose that each unital hereditary C*-subalgebra of A has the
property of tracial m-almost divisible for some integer m > 0. Then, for any integer k > 1,
there is a sequence of order zero contractive completely positive linear maps L, : M — A such
that {Ly(e)} is central sequence of A for a minimal projection e € My, and such that, for every
mteger m > 1,

nh_)llolo Tg;ﬂa(ﬁ){\T(Ln(e) )—1/k|} =0. (€8.365)

Proof. Let {x1,x2, ..., } be a dense sequence in the unit ball of A. Let & > 1 be an integer. Fix
an integer n > 1. There is 1 > =, > 0 such that

la™/ "2 — za™™|| < 1/4n, m =1,2,...,n
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for all 0 < a <1 and those z such that ||z|| <1 and
lax — zal| < .

Since A has finite weak tracial nuclear dimension, there is a projection p, € A and a unital
C*-subalgebra B,, with 15 = p, and with dim,,.B = d, < oo satisfying the following:

lpnzi — zipn|| < 1/4n, i=1,2,...,n, (e 8.366)
dim(ppxipn, Bn) < 1/3n, i=1,2,...,n, and (e 8.367)
7(1—p,) < 1/4n for all 7€ T(A). (8.368)
(€8.369)
Let y(i,n) € B, such that ||y; || <1 and
lpnzipn —y(i,n)|| < 1/2n, i=1,2,...,n. (e8.370)

It follows from Lemma 4.11 of [60], since p, Ap,, has the tracial m-almost divisible property,
that there is an order zero contractive completely positive linear map ®,, : My — p, Ap, such
that

|Pn(a)y; — yi®Pn(a)|| < min{l/4n,v,/4}||a|| for all a € A, i=1,2,...,n, (e8.371)
and 7(®,(idy, ) = (1 —1/n) for all 7 € T(p,Apy). (€8.372)

By Proposition 1.1 of [60], there is a homomorphism ¢, : Cp((0,1])® M}, — A such that ®,,(a) =
Yn(1® a) for all a € My, where o(t) =t for t € (0,1]. Let ¢, = 1!/". Define Ly (a) = ¥ (c, ® a).
Clearly L, is a zero order contractive completely positive linear map. It follows that

(La(en)™ = dulen ®e1) = du((1© e1)™") = (Bn(er))™".

Let {e;;} be a matrix unit for M; and denote by e; = e;, i = 1,2,...,k. Let z;,, =

¢(cnm/ ’® ei1)- Then, since ¢ is a homomorphism,
:Ezml‘;km = Ly(e;)™ and :E;km$zm =Ly(e))™, i=1,2,....k.

It follows that

T(Lp(er)™) = 71(e(c ®e1)) (€8.373)
1 1-1/n
> ET(@(lde)) > for all 7 € T'(p,Apn), (€8.374)
m=1,2,...,n. It follows that, for any m > 1,
nh_)n;o Tg;ﬂa(ﬁ) |7(Ly(e1)™) — 1/k| = 0. (8.375)
We also have,
|Zn(en)i = yiLn(e)ll = [1Pn(en)'/ i = yi®nle)"| (e8.376)
< 1/4n, i=1,2,...,n. (€8.377)
It follows that
|Ln(e1)x; —xiLn(er)]] < 1/n, i=1,2,...,n. (8.378)

Since {x1,T9, ..., } is dense in the unit ball of A, we conclude that

li_)rn |Ln(e1)x — xLy(er)|| =0 for all z € A. (€8.379)
So {L,(e1)} is a central sequence of A. O
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We now apply the argument established in [39] to prove the following.

Theorem 8.3. Let A be a unital separable simple C*-algebra with finite weak tracial nuclear
dimension. Suppose that A has the strict comparison property for positive elements and every

unital hereditary C*-subalgebra of A has the the property of m-almost divisible Cuntz semigroup.
Then A is Z-stable.

Proof. By exactly the same argument for the proof that (ii) implies (iii) in [39], using B2l instead
of Lemma 3.3 of [39], one concludes that any completely positive linear map from A into A can
be excised in small central sequence. As in [39], this implies that A has property (SI). Using
instead of Lemma 3.3 of [39], the same proof that (iv) implies (i) in [39] shows that A is
Z-stable. O

Corollary 8.4. Let A be a unital separable simple C*-algebra in C1. Then A is Z-stable.

Proof. Note, by and [£.1], that every unital hereditary C*-subalgebra of A has the property
of 0-almost divisible Cuntz semgroup. The lemma then follows from B3] and the fact that each

(C*-algebra in Z; has nuclear dimension no more than d for all d > 0.
O

9 General Existence Theorems

Lemma 9.1. Let X be a connected finite CW complex with dimX = 3, let Y = X \ {{},
where £ € X is a point, let Q be a connected CW complex and let ' = Q\ {w}. Let P €
M (C(2)) (for some integer k > 3(dimY + 1)) be a projection with rank(P) > 3(dimY + 1).
Let k € KK(Co(Y),Co(Y)) such that k(F3K.(Co(Y))) C F3K.(Co(2)). Then there is a unital
homomorphism ¢ : C(X) — PMi(C(Q))P such that

[Plcory] = & (€9.380)
Proof. This is a combination of Proposition 3.16 and Theorem 3.10 of [15]. O

Corollary 9.2. Let X be a connected finite CW complex such that X©®) (see [Z13) has r com-
ponents, let Y = X \ {{}, where £ € X is a point. Let Q be a connected CW complex and let
' =Q\ {w} for some point w € Q. Let P € My(C(2)) (for some integer k > 3(dimY + 1)) be
a projection with rank(P) > 3(dimY + 1). Let k € KK(Cy(Y),Co(Q)) such that

K(F3 K (Co(Y))) C F3K.(Cp(R2)) and k = K1 o s3, (€9.381)

where s3 @ C(X) — C(X(?’)) is the restriction and k1 € KK(C(X(?’)),C’O(Q’)) such that
H1|pc( (3))(0()((3)) = 0 with the composition
X

KO(C(X(g)) = kerpC(X(s)) S5 pC(X(s))(C(X(g)).
Then there is a unital homomorphism ¢ : C(X) — PMy(C(Q2))P such that

[plco(v)] = & (€9.382)

Corollary 9.3. Let X be a connected finite CW complex, let Y = X \ {&}, where £ € X
is a point. Suppose that X3 has r components. Let Q be a connected CW complez and let
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' =Q\ {w} for some point w € Q. Let P € M(C(Q)) (for some integer k > 3r(dimY + 1)) be
a projection with rank(P) > 3r(dimY + 1). Let k € KK(Cy(Y),Co(Q)) such that

H,(FgK*(C()(Y))) C FgK*(CQ(Q)), (e 9383)
KlEn k. (Co(yy) = O for all m>4 and (€9.384)
Kk, (cotv)z/ezy = 0 for all k> 1. (€9.385)

Then there is a unital homomorphism ¢ : C(X) — PM(C(Q2))P such that

[eloy(vy] = K- (€9.386)

Proof. Note that ker(s3), = F4K,(Co(Y)). There is v € Hom(K,(C(X®)), K,(Cy())) such
that 7o (s3)« K. (Co(y)) and v

K1k, (c(x®),z/kz)) = 0 for k> 1. Thus applies. N

Lemma 9.4. Let X be a connected finite CW complex with dimension d and with K;(C(X)) =
Z" @ Tor(K1(C(X)), let 6 > 0, let G C C(X) be a finite subset and let P C K(Cy(Z)) (where
Z = X \ {&} for some point £ € Z) be a finite subset. There exists an integer N1(6,G,P) > 1
satisfying the following:

Let Y be a connected finite CW complex, and let o« € KK(Cy(Z),Co(Y0))), where Yy =
Y \ {yo} for some point yy € Y. For any projection P € My (C(Y)) with rankP > N1(6,G,P) -
3(dimY + 1), there exists a unital §-G-multiplicative contractive completely positive linear map
L:C(X)— C=PMg(C(Y))P (for some integer R > rankP) such that [L]|p = a|p.

Moreover, suppose that X : J.(Z")) — U(Mg(PMgr(C(Y))P))/CU(Mys(PMgr(C(Y))P)) is a
homomorphism with Il. o X o J. = ok, (c(x)) (see[27), one may require that

LY jzry = A (e9.387)

Proof. Note that Tor(K;(C(X))) is a finite group.
There is a connected finite CW complex T" with dim7" = 3 such that Ko (Co(1p)) = Ko(Co(Z2))

and K1(C(T)) = Tor(K1(C(X))), where Ty = T\ {¢{} and where £ € T is a point.
k

A

Let B=C(T)® C(T)® --- @& C(T). We identify Z" with K;(B). Let

T

By = Cy(Tp) ® Co(Tp) @ -+ ® Co(Ty),

where Ty is the circle minus a single point. Since K1(C(Ty)) = K1(C(T)), we obtain a isomor-
phism 1 : K.(Co(Z)) = K«(Bo® Co(Tp)). There is an invertible element § € KK (Cy(Z), By ®
Co(Tp)) such that 8|, cy(2)) = Bilki(Co(z)), @ = 0, 1. Thereis, by [12], a unital J-G-multiplicative
contractive completely positive linear map L; : C(X) — Mg (B @ C(T)) such that

[L1llp = Blp,

where K is an integer depending only on X, §, G and P. We may also assume that L% is defined
and L% is invertible on J.(Z"). Put N(4,G,P) = K + (rK).

Note that 8! x a € KK(By ® Co(Tp), Co(Yp)). There is a; € KK (B, Co(Yy)) and ag €
KK(CQ(T()), C()(Y())) such that a1 @ as = 5_1 X Q.

Note that ag(Tor(K1(C(T")))) C Tor(K1(C(Y))) (or it is zero). Note that F5(K1(C(T))) =
Tor(K1(C(T))) and F,,,(K1(C(T))) = {0} if m > 3 (see Lemma 3.3 of [I7]). It follows from
213l that Tor(K1(C(Y))) C F3(K1(C(Y))). Therefore, by Theorem 3.10 and Proposition 3.16
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of [15], there is a unital homomorphism ¢; : C(T) — Ms(C(Y)), where s = 3(dimY + 1) such
that
[901’00(T0)] = Q9.

Note that K K (By, Co(Yy)) = Hom(K1(By), K1(Co(Yp))). Let z; € C(T) be the standard unitary
generator of C(T) for the j-th copy of C(T) in B. Note that K;(B) = K;(By) is generated by
[21], [22], -, [2r]. We may assume that [Li] o J(Z*) is generated by [z;], 7 = 1,2, ..., 7.

Let P € Mr(C(Y)) be a projection (for some large R > 0) such that

rankP > 6K (dimY + 1).
Let @ be a trivial projection with rank K's. We may assume that P > (). Note also the map
12 U(M,(C(Y))))/CU(M(C(Y)))) = U(PMg(C(Y))P)/CU(MR(C(Y))P)
is an isomorphism. Let A\; =+ Yo o (L%)_1|JC(ZT). Put uj € U(M,(C(Y))) such that
[u;] = a1 ([z5]) and @; = X\ o J([z]), 7=1,2,...,r (€9.388)

Define 9; : C(T) — M (C(Y)) by sending z; to u;, j = 1,...,7. Put ¢ : B — Ms(C(Y)) by
¢ = diag(¢17¢27 "'7¢7‘)‘ Define

L = (diag(v, p1) @ idagy ) 0 L.

we check that L meets all requirements.
O

Lemma 9.5. Let X, 0 >0, G C C(X) and P C K(Cy(Z)) be as in[94. LetY be a connected
finite CW complex and let o € KK(Cy(Z),Co(Yp))) such that

OZ(F3K*(C(](Z)) C F3K*(C(](Yb)), (69.389)
alp, k. (Coz) = 0 for all m >4 and (€9.390)
ok, o) zmzy = 0 for all k> 1, (€9.391)

where Yo =Y \ {yo} for some point yo € Y. Suppose, in addition, that
AMJ(Z") N SU(C(X))/CU(My(C(X)))) C SU4(C)/CU(Ma(C)),

where C = PMg(C(Y))P. Then one may require L to be a homomorphism in the conclusion of
Lemmal[9.7] . Moreover, one can make rankP = 6ror(d+1), where ro is the number of connected
components of X,

Proof. Let o be the number of connected components of X® . By @3] there is a unital homo-
morphism hg : C(X) — Mayq41)(C(Y)) such that
[ho] = alg(cy(2))-

We may write, as in 222 J(Z") = G1 & Go, where G is free and Gy = J(Z")NSU4(C(X)). Let
Al = A — hp. Since I, o o J. = alzr, im M|y, zry © Up(Ma(C(Y))/CU(My(C(Y))). Thus, by
the assumption,

A(G2) C (SUa(C) N Uo(Ma(C)))/CU(My(C(Y)))- (€9.392)

It follows from ZIT that A;|g, = 0. By 222 write K;(C(XM) = S @ K1(C(X))/F3K,(C(X)).
We may assume that II(G1) = K1(C(X))/F3K1(C(X)), where IT : U(My4(C(X))/CU(My4(C(X))) —
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K1(C(X)) is the quotient map. Let G; = ZF be generated by the free generators g1, go, ..., gk
(k <7). Let z; € Mg(C) be unitary such that Z; = A\i(g;), j = 1,2,..., k. Let vi, va, ..., v, € C(X)
be unitaries representing g1, g2, ..., gk, respectively. Since X (1) is 1-dimensional, it is easy and well
known that there is a unital homomorphism h; : C(X1) — M3y, q+1)(C) such that hy(v;) = zj,
j=1,2,...,k. Define L = hg & h;y. O

Lemma 9.6. Let X be a connected finite CW complex and let Y = X \ {£}, where £ € X s
a point. Let Ko(Co(Y)) = ZF @ Tor(Ko(Co(Y))) and K1(C(X)) = Z" @ Tor(K1(C(X))). For
any § > 0, any finite subset G C C(X) and any finite subset P C K(Cy(Y)), there exist integers
N1, Ny > 1 satisfying the following:
Let Q be a finite CW complezx and let k € Homp (K (Co(Y)), K(C(R2))) and let
i—1
——
K = max{|pco) (k(9:))| : gi = (0,...,0,1,0,...,0) € Z*}.
For any projection P € My (C(R2)) with rankP > (NoK + Ni(dimY + 1)}, there is a unital
d-G-multiplicative contractive completely positive linear map L : C(X) — PMpy(C(Q))P (with
some integer N > rankP) such that

[L)lp = klp. (€9.393)

Moreover, if X : J(Z") C J(K1(C(X))) = U(P(Mn(C(Q2))P)/CU(PMn(C(2))P) is a homo-
morphism, then one may further require that

LY jzry = A (€9.394)

Proof. Tt suffices to show the case that 2 is connected. So in what follows we assume that (2 is
a connected finite CW complex. Let w € €2 be a point and let Qg = Q\ {w}. There is a splitting
exact sequence

0— Cy(Q) — C(Q) = C —0. (€9.395)

Thus
KK(C(X),C(Q)=KK(C(X),C)® KK(C(X),Cy(Q)).

Write k = ko ® k1, where kg € KK (Cy(Y),C) and k1 € KK(Co(Y), Co(0)).

Let N1(6/2,G,P) > 1 be given by [0.4] for X, §/2, G and P. Let No = N2(6/2,G,P) be the
integer given by Lemma 10.2 of [34] for X, §/2, G and P. There exists, by Lemma 10.2 of [34],
a unital 0/2-G-multiplicative contractive completely positive linear map L; : C(X) — Mn,x
such that

[L1)(9:) = pe(o)(ko(9i) € Z, [Li]lp = kolp. (€9.396)

Let v : My,x — Mn,x(C(£2)) be a unital embedding. Put Ny = 3N1(6/2,G,P) + 1 and put
Ry = Ni(dimY +1). Let P € M (C(2)) be a projection whose rank is at least NoK + R;. Let
Q < P be a trivial projection of rank NoK. Let P, = P — . P; is a projection with at least
rank R;. Note that the embedding (for some large R > 1)

Y1 1 U(PLMR(C(Q))P1)/CU(PLMR(C(Q))P1) — U(PMg(C(Q))P)/CU(PMg(C(22))P)
is an isomorphism. Let

V2 2 UM,k (C(92)))/CU(Mn,k (C())) = U(PMg(C(Q2))P)/CU(PMRr(C(2))P).
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be the homomorphism defined by v — P—Q+u for unitaries u € QMgr(C(Q))Q = My,x (C(£2)).
Define \; = 770X — 0120 Lﬂ 7(zr)- 1t follows from that there is a ¢§/2-G-multiplicative
contractive completely positive linear map Lo : C'(X) — Py Mg(C(Q2))P; such that

[Lo]lp = kalp and Ly|yzr) = A (€9.397)

We then define
L =11+ Ls.

It is ready to verify that L, N; and Ny meet all the requirements.

The following is a variation of a result of L. Li of [19].

Lemma 9.7. Let X be a path connected compact metric space, let € > 0 and a finite subset
F C C(X)s.q., there exists a unital homomorphism ¢ : C(X) — C([0,1]), an integer N > 1
satisfying the following, if P € M,(C(Y)) is a projection with

rankP(y) > N(dimY + 1) for all y €Y (€9.398)

and X : Aff(T(C(X))) = Af f(T(PM,.(C(Y))P)) is a unital positive linear map, whereY is a
compact metric space, there is unital homomorphism ¢y : C([0,1]) — PM,(C(Y))P such that

|To@a0p1(f) = ANf)(T)| <€ for all f€F (€9.399)
and for all T € T(PM,(C(Y))P).

Proof. Tt follows from Lemma 2.9 of [19] that there exist a continuous map « : [0,1] — X and
a unital positive linear map v : C([0,1]) — C(X) such that

|T(yo (foa)—7(f)] <e¢/2 for all feF (€9.400)

and for all 7 € T(C(X)). Let N be given by Corollary 2.6 of [19] for X = [0,1], ¢/2 and for
finite subset G = {foa : f € F}. For A o+, by applying Corollary 2.6 of [19], one obtains a
unital homomorphism 9 : C([0,1]) — PM,(C(X))P such that

[T 0@a(g) —Ao(g)(7)] <€/2 for all g€ G (€9.401)

and all 7 € T(PM,(C(Y))P). Define ;1 : C(X) — C([0,1]) by p1(f) = foa for all f e C(X).
Then

[7(p2 0 01(f)) = A7) < [T o @a(f oa) = Aory(foa)()] (€9.402)
+A oy (foa)(r) = A7) (€9.403)
<€/2+€/2=c¢ (€9.404)

for all f € F and for all 7 € T(PM,(C(Y))P).
U

Lemma 9.8. Let 1 > ¢ > 0, Y be a finite CW complexr, r > 1 be an integer and C =
PM,,(C(Y))P for some projection P € M;,(C(Y)) such that rank P(y) > (67/€)(dimY + 1)
and m > rankP(y) for all y € Y. Suppose that u € U(M,(C)) with [u] = 0 in K1(C) such that
uF € CU(M,(C)) for some integer k > 1, then

dist(w, 1MT(C)) < €/r.
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Proof. Since rankP > 6m(dimY + 1), u € Up(M,(C)) (see [4T]). Write u = [[_; exp(v/—1h; ),
where h; € M,(C)s.q., 7 =1,2,...,s. Since uF € CU(M,(C)),

det(u®(y)) =1 for all y €Y.
It follows that

<rj__1>j§:jlﬂ<hj><y> = 1)/ for y €, (¢9.405)

where I(y) is an integer for all y € Y. Note that I(y)/k is a continuous function on Y. Let
Y =Y UuY,U---UY;, where each Y; is connected, ¢ = 1,2,...,1. It follows that I(y)/k is a
constant integer on each Y;, i = 1,2, ...,[. For each i, define f; to be a number in [—m, 7| so that

exp(v/—1fi) = exp(v—1l(y)7/k) for y € Y. Define
v(y) = exp(—v/—1f;/rrankP(y)) for all y € Y. (€9.406)
It is a unitary in Up(M,(C)). Then
v —1as,c)ll < €/r. (€9.407)
On the other hand,
det((vu(y)) =1 for all y € Y. (€9.408)

Therefore, by 211l vu € SU,.(C) N Uy(M,(C)) C CU(M,(C)). It follows from this and (€9.407))
that

dist (@, Tay, () < dist(T, 1ag, (o) < €/ (€9.409)
O

Theorem 9.9. Let X = X7 U XoU---UX; be a finite CW complex with dimension d > 0, where
each X; is a connected finite CW complex and let kerpc(xy = Z¥ & Tor(Ko(C(X))). Suppose
that {g1, 92, ..., gr } is the standard generators for ZF.

For any € > 0, any finite subset G C C(X), any finite subset P C K(C(X)), any finite subset
H C C(X)s.a., any 01,02 > 0, any finite subset of U C U(My(C(X))), and any integer S > 1,
there exists an integer N satisfying the following:

For any finite CW complex Y, any & € Homa(K(C(X)), K(C(Y))) with ([1¢(x,)]) = [P}]
for some projection P; € M, (C(Y')) (and for some integerm > 1) , and P = Py+Py+---+Ps €
M, (C(Y)) is a projection, and rankP;(y) > max{NK, N(dimY + 1)} for all y € Y, where

K = max {sup{lpoe)(r(g:)(7)] : 7 € T(CY))}},

for any continuous homomorphism

7 U(Mg(C(X)))/CU(Ma(C(X))) (€9.410)
= U(My(P My (C(Y))P))/CU(Mg(P M (C(Y))P)) (e9.411)
and for any continuous affine map X : T(PM,,(C(Y)P) — T(C(X)) such that k, v and X

are compatible, then there exists a unital e-G-multiplicative contractive completely positive linear
map ® : C(X) — PM,,(C(Y))P such that

Gl —" (e9.412)
dist(®*(2),v(z)) < o1 for all z€ U and (e9.413)
|To®(a) — A(T)(a)] < o2 for all a € H. (e9.414)
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If ui,ug, ..., um € U so that [uj] # 0 in K1 (C(X)) and {{u1], [ug), ..., [um]} generates a free group,
we may require that

@) = v(@5), j=1,2,....,m. (€9.415)

Moreover, one may require that

S1

PR G—
P = QO ©® diag(@lv Qb cey Ql) D QQ

for some integer S1 > S, where Qg, Q1 and Qo are projections in PM,,(C(Y))P, Qo is unitarily
S

equivalent to Q1, and & = gD P B P B ... B P DPo, D : C(X) = QoM (C(Y))Qo, 1 =
Yroh, P : C(J) = Q1 My, (C(Y))Q1 is a unital homomorphism, h : C(X) — C(J) is a unital
homomorphism, ®3 = 9 o h and ¥y : C(J) = Q2M,,(C(Y))Q2 is a unital homomorphism,
where J is a disjoint union of s many unit intervals.

Proof. Without loss of generality, we may assume that G and H are in the unit ball of C(X)
and may assume that H C G. Moreover, to simplify notation, without loss of generality, we may
also assume that X is connected. Write K1(C(X)) = Z¥* @ Tor(K;(C(X))). Furthermore, we
may assume that U = Uy UUy UlUs, where Uy C AfF(T(C(X)))/pcx)(Ko(C(X))), U C J(ZF)
and Us C J.(Tor(K1(C(X)))). Let Ho C C(X)s.q. such that

Uy C Ho.

Put Hy = HUHg. Let 0 < 6 < e. We may also assume that (20,G,P) is K K-triple. Choose an
integer R > 1 such that

1 .
TS < min{oy /87, 09 /87}. (€9.416)

Let Ny (in place of N) be the integer given by for €/4S (in place of €) and H; (in place of
F). Let N1 and Ny be integers given by (for 6 = €/2). Put

N{ = max{Ny, 2Ny, 2Ns, 487 /01 }.

Define
N =2(Nj +1)(2RS +1).

Let k € KK(C(X),C(Y)) such that x([1¢(x)]) = P for some projection P € M,,(C(Y)) (for
some large m > 1) with rankP(y) > max{ N K, N(dimY + 1)}, where

K = max sup{|pc(y)(5(9:)(7)] : 7 € T(C(Y))}-

To simplify the proof, by considering each connected component separately, we may assume
that Y is connected. Let Qo € PM,,(C(Y))P be a projection with

rankQo = 2max{N; K, N (dimY 4 1)} > Ny (K + dimY + 1).

This is possible because that rankP > max{NK, N(dimY + 1)}. Note that P — @ has rank
larger than 2N{RS(dimY + 1). Let P, = P — Qg. There is Ry < NjdimY + 1) such that

rankP; — (dimY + 1) = S;Nj(dimY + 1) + Ry (€9.417)
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for some integer S; > RS. Then there is a projection P; < P; such that P is unitarily equivalent

to
S1

——
diag(Q(M Q07 ceey QO)

Write
S1

——f—
Pl = (Q17Q17 "'7Q1)@Q27

where ()1 is unitarily equivalent to @y and Q2 < @1, where Q)2 has rank Ry 4+ dimY + 1. Note
that

rankQo + rank(Q2)
rank P

For any integer r > 1, let I : T(M,C(Y)) — T(PM,,(C(Y))P) be the map defined by

< min{oy/4,09/4}. (e9.418)

I(r)(a) = /Y tr(a)dpir (9.419)

forall 7 € T(C(Y)) and all a € PM,,,(C(Y))P, where p; is the probability measure induced by
7 and where tr is the normalized trace on My,np. Since the rank @ is at least No(dimY + 1),
it follows from that there is a unital homomorphism h : C(X) — C([0,1]) and unital
homomorphisms 1 : C([0,1]) = Q1 M, (C(Y))Q1 and ¢ : C([0,1]) — Q2M,,(C(Y))Q2 such
that

|T o1 oh(a) — Ao I'(7)(a)| < min{oy,09}/25 (€9.420)

for all @ € Hy and all 7 € T(Q1M,,(C(Y))Q1). Define &1 = 1 o h and 3 = 1) o h. Define
S1

e e
v C(X) — Ple(C(Y))Pl by U = (<I>1, <I>1, ceny <I>1) @q)g Let K1 =K — [\I’] Let
A U(QoMn (C(Y))Q0)/CU(QoMm(C(Y))Qo) = U(PMp(C(Y))P)/CU (P M (C(Y))P)

be the isomorphism defined by u — (P — Qo) + u for all unitaries u € U(QoM,,(C(Y))Qo). De-
fine A : U(PMu(C(Y))Py)/CU(P My (COY))P1) = U(PMu(C(Y))P)/CU(PMy (C(Y))P)
similarly. Define 41 = A™! o (y — A’ o U¥). Then, by applying [.6, we obtain a unital €/2-G-
multiplicative contractive completely positive linear map ¥; : C(X) — QoM (C(Y))Qo such
that

[W1llp = malp and Wil =70 (e9.421)

Put C = PM,,(C(Y))P. Define ® = ¥; & . It is clear that

[@]lp = [T]lp +[¥]lp (€9.422)
= kilp + [¥]|p = Klp. (€9.423)

It follows from (e9.420)) that
|70 ®(a) — A(7)(a)| < min{o1/2,02} (€9.424)

for all @ € H; and 7 € T(C). It follows from (e9.421)) that

H(z) = 4(2) for all z € Uj. (€9.425)
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Let Jo : Ki(C(Y)) — U(C)/CU(C) be the homomorphism defined in 2.7 which splits the
following short exact sequence:

0 = AF(T(C))/pear (Ko(C)) — U(C)/CU(C) — K1(C(Y)) = 0. (€9.426)

(It should be noted that rankP > Nj(dimY + 1).) Let z € Us and let vg,v; € U(C) such that
To = A(2) and Ty = ®¥(2). Since 7 is compatible with &, we have

vivy € Up(C) and (A\(z*)®*(2))* =T¢ in U(C)/CU(C) for all z € Uj. (e9.427)

Since Ny > 487 /o1, by 0.8]

dist(A(z), ®¥(2)) < 01/2 for all z € Us. (€9.428)

Now for z € Uy, by (£9.425]),
dist(®*(2),7(2)) < oy for all z € Up. (€9.429)
The lemma follows. O

Corollary 9.10. In the statement of[9.9, let & € X; be a point and X = X;\{&}, i =1,2,...,s.
Let C = PM,,,(C(Y))P. Suppose that, in addition, Y is connected, Yo =Y \{yo} for some point
Yo €Y,

k(o) € KK(Co(X;), Co(Yo)), (€9.430)
K(F3K«(C(X))) C F3K.(C), klp, k. (cx) =0 for all m > 4, (€9.431)
Kk, (cx)z/kz) =0 for all k> 1 and (€9.432)
ASUL(C(X))/CU(My(C(X)))) C SU4(C)/CU(Mg(C)). (€9.433)
Then ® and ®g can be required to be homomorphisms.
Proof. The proof is exactly same but applying instead of
[l

Corollary 9.11. Let Q = Q1UUQsU- - -UQ be a disjoint union of connected finite CW complexes
and let X = Q x T has dimension d +1 and X; = Q; x T, j = 1,2,...,s. Then Lemma
holds for this X with d in the statement replaced by d + 1 and with the following additional
requirements. Suppose that P = Py U B(P1), where Py, P1 C K(C(Q)) are finite subsets and
suppose Uy C J(B(FoKo(C(Q))) NU is a finite subset such that, in addition,

klgpy) =0 and 7yl = 0. (€9.434)

Then, one can further require that
Py = Poo ® Pyr and g = By & Do1, (€9.435)
where Poo, Po1 € My, (C(Y)) are projections, ®oo(f ®g) = Z;Zl f(&)a; - hi(g) for all f € C(2)
and g € C(T), & € Q; is a point, qo; € My (C(Y)) is a projection with Z;Zl q,; = Poo, hj :

C(T) = qojMm(C(Y))qo,; is a homomorphism (j = 1,2, ..., s) with hj(z) € Up(qo; Mm(C(Y))qo,;)

(j = 1727"'78)} (I)OI(f®g) = Zj:lL](f) g(l)ql,J fO’f’ all f € C(Q) and g € C(T)v 1 e
T is the point, q1; € Mpu(C(Y)) is a projection with 375_, q1; = Por, and Lj : C(Q) —
@1,; M (C(Y))qu,; is a unital contractive completely positive linear map.
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Proof. Note that, as in the proof of[0.9] one may assume that 2 is connected. Write K;(C(X)) =
ZF @ Tor(K,(C(X))). Note that

B(F2Ko(C(2))) C F5K1(C(X)).
In that case, one may assume that
U = Upy U U1 U Uy U U Ué,

where

Upo C AE(T(C(X)))/peix) (Ko(C(X)), (
Un C{u® lo(r) : u € U(Msaiy(C(Q))) and [u] € ZF € K1(C(X))}, (€9.437
Uore C{u @ 1oery 2 u € U(M3(q41)(C(S2))) and [u] € Tor(K:1(C(X))} (

U = {1®z} and U] =U,. (

To simplify notation further, we may assume that Uy = {1, 2, ..., Tpp) }, where ; € U(Me(q41)(C(X)))
such that there exists a unital homomorphism

H; : My(C(S%)) = U(Mgas1)(C(X)))

such that H;(up) = x4, i = 1,2,...,n(b). By the assumption, x([x;]) =0, i = 1,2,...,n(b). In the
proof of 0.9 we choose R so that

1/RS < min{01/16, 0'2/16}.

We also choose Qg so that rank@Qy = N1 K (dimY + 1) + 1. Let Qoo < Qo have rank N; K (dimY")
and Qo1 have rank one. We proceed the proof and construct ®;, ®5 and V. Since both ®; and
¥4 are homomorphisms which factor through C(J), by 217}

UHz) =0 for all = €Uy, (€9.440)

Let 1 = A~'(y — A o ¥¥) (as 71 in the proof of [@9). We then proceed to construct
L:C(Q) = QooMn(C(Y))Qoo the same way as Wy in the proof of 0.9 so that

[Llpy = kalpy and (L) = g (e9.441)

Define ®¢; : C(X) — QooMm(C(Y))QOQ by (I)()l(f (= g) = L(f) . g(l)QQO for all f S C(Q) and
g € C(T), where 1 € T is a point. Note that

<I>(i]1(x) =0 for all x € Up. (€9.442)

Now define h : C(T) = Qo1 M (C(Y))Qo1 by h(g) = g(z) for all ¢ € C(T), where z €
Up(Qo1 M, (C(Y))Qo1) is a unitary so that

T = ’Yl(lC(Q) ® 2). (€9.443)

Define ®gg : C(X) = Qo1 M (C(Y))Qo1 by Poo(f ® g) = f(€)Qo1 - h(g) for all f € C(Q) and
for all g € C(T), where £ € Q is a point. We also have that

®b 1, = 0. (€9.444)
We then define &g = &9 @ Pg1 and & = ¥ G &g d ¥ & $y. As in the proof of 0.9, we have

dist(A(z), ®*(z)) < o1 for all = € Upyy. (e9.445)
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We have, for all z € U, as in the proof of [0.9]
dist(A(z), ®*(2)) < o1 for all z € U. (€9.446)

The rest requirements now are ready to check.
O

Theorem 9.12. Let X be a compact metric space such that C(X) = limy, o (C(X},), ¥ ), where
each X, is a finite CW complex and ¢, : C(X,) — C(X,41) s a unital homomorphism and
let on.00 1 C(Xy) = C(X) be the unital homomorphism induced by the inductive limit system.
For any € > 0, any finite subset G C C(X), any finite subset P C K(C(X)), any finite subset
H C C(X)sa., any 1,02 > 0, any finite subset U C U(M,(C(X))) (for some integer r > 1)
and any integer L1 > 1, there exists an integer n > 1 such that P C [pn oo (K (C(X5)), a finite
set of mutually orthogonal projections qi,q2,...,qs € C(X,) with lexy)y =@+ + -+ s,
a finite subset gi,gs,...,gr which generates ZF such that kerpryc(x)y NP is contained in a
finitely generated subgroup Gy = ZF @ Tor(Gy), an integer N > 1 and a finitely generated
subgroup G1 C U(M;(C(X)))/CU(M;(C(X))) (for some 1) withUd C G1, Ulg, is injective and
II(G1) C (Yn,00)s1 (K1(C(Xy))) satisfying the following:

For any finite CW complex Y, any k € Homp(K(C(X5)), K(C)) with k([g;]) = [B;] for some
projection P; € M,,(C(Y)) (and for some integer m > 1), P= P+ P, +---+ Ps € M,,,(C(Y))
is a projection, rankP;(y) > max{N K, N(dimY + 1) for ally € Y and for C = PM,,(C(X))P,
where

K = mas {sup{lpc(s(g)(7)] : 7 € T(O)}}.

Gi = (Yn,00)x0(g}) for some g, € Ko(C(Xy)), i =1,2,...,k, for any continuous homomorphism

71 Gi+ AE(T(C(X)))/p(Ko(C(X))) (€9.447)
— U(MZ(C))/CU(MI(C)) (69.448)

and for any continuous affine map X : T(C) — T(C(X)) such that po(x)([¥n,00(q)]) (A7) =

po([Bi])(T) for all T € T(C), r([thn.o0](€)) = T(y(g)) for all g € G1 andé’ € Ki(C(Xy)) such
that [ o)(§) = g, and X and v are compatible, then there exists a unital e-G-multiplicative

contractive completely positive linear map ® : C(X) — PM,,(C(Y))P such that

[P otYno] = (€9.449)
dist(®*(z),v(z)) < o1 for all z €U and (€9.450)
|70 ®(a) — A(7)(a)] < o2 for all a € H. (€9.451)
Moreover, one may require that
L1

PR
P = Q(] ©® diag(@b Qb cey Ql) D Q27

where Qp, Q1 and Qo are projections in PM,,(C(Y))P, Qo is unitarily equivalent to @1, and
L1

P=P) PP, P D ... E» P DD, where Ly > L is an integer, D¢y : C(X) = QoM (C(Y))Qo,

O = Yy 0@, Y1 : C(J) = Q1 M, (C(Y))Q1 is a unital homomorphism, ¢y : C(X) — C(J)

is a unital e-G-multiplicative contractive completely positive linear map, ®o = Py 0 o and Vs :

C(J) = Q2M,,(C(Y))Q2 is a unital homomorphism, where J is a disjoint union of s many unit

intervals.
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Proof. Fix € > 0 and a finite subset G C C(X). Without loss of generality, we may assume that
‘H C G and G are in the unit ball of C(X).

We first prove the case that X is a compact subset of a finite CW complex of dimension d.
Since we assume that, in this case, dimX,, = d, the embedding from

U(Ma(C(X)))/CU(M4(C(X)))

into U(M,(C(X))/CU(M,(C(X))) is an isomorphism for all n > d. We may assume that
UCU(My(C(X))), without loss of generality.

There is a sequence of decreasing finite CW complexes {X,,} of dimension d such that
X, = X. Write C(X) = lim,00(C(Xy), ™), where r, : C(X,) — C(X) is defined by
ro(f) = flx for all f € C(X,,),n=1,2,.... Let (§,G,P) be a K L-triple. We may assume that

§ < min{e, o1 /18(d + 1)%, 09/18(d + 1)?}.

By 2.6 of [36], there exists an integer ng > 1 such that there is a unital §/4-G-multiplicative
contractive completely positive linear map ¥ : C(X) — C(X,,) such that

170 © ¥(g) — g|| < 6/4 for all g €. (€9.452)
We may assume that P’ C K(C(X,,)) is a finite subset such that
[rno)(P') = P. (e9.453)

Suppose that p,q € M,,(C(X)) are two projections such that 7 ® Tr(p) = 7 ® Tr(q) for all
7 € T(C(X)), where Tr is the standard trace on M,,. Then, Tr(p(z)) = Tr(q(z)) for all z € X.
With sufficiently large ng, we may assume that there are projections p', ¢ € M,,(C(X,,)) such
that p'|x = p and ¢/|x = ¢. Since Tr(p) and T'r(q) are integer values continuous functions on
Xpg, there is ng > ng such that

Tr(p' (z)) = Tr(d' (z)) for all z € Xy (€9.454)
Therefore, by choosing larger ng, we may assume that
Tr(p'(x)) =Tr(d (z)) for all z € X,,. (€9.455)

Let G be the subgroup generated by kerpc(xy N P. From the above (see (e9.453)), we may
assume, by choosing larger ng, that

G} C (7o )s0(kerpo(x,,))- (e9.456)
We may write
kerpo(x,,) = 2™ @ Tor(Ko(C(Xp,)))- (€9.457)
Let s1, s2,..., 5k, be free generators of 7ZF . We may write that
(rng)s0(si) = gi, i =1,2,...,k and (rp,)s0(s;) =0 for all j > k+ 1. (€9.458)
Thus we may write

Go = (rny)so(kerpeyx,,,)) = Z* & Tor(Go). (€9.459)
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We may also assume that U’ C U(My(C(X))) such that r, (') =U. Let G’ C C(X,,) be a finite
subset such that 7,(G’') = G and let H' C C(X,,)s.a. be a finite subset such that r,(H') = H
and they are all in the unit ball of C'(X,,). We may assume that, by (e9.452),

(g © llp = [ido ]l and (ray 0 9l = (idogx)lu- (e9.460)

Suppose that X,,, = X, 1 U X2 U---UX,, s is a finite disjoint union of clopen subsets. Let
4 = lo(x,,,) J = 1,2, Let Lj > 1. Let N > 1 be given by 0.9 for X,,, (in place of X),
d/4 (in place of €), G’ (in place of G), P’ (in place of P), U’ (in place of U), o1/4 (in place of
o1) and o2/4 (in place of o9) and L;. We choose G1 = J.((7ng)«1 (K1(C(Xp,))), where J. may
be chosen to be as in Note that [ can be chosen to be dimX,,, + 1.

Now suppose that x is given as in the theorem (for the above g;, i = 1,2,...,k, and g;,
j=1,2,...,s) and L1 > 1 is given.

By applying [@.9] there is a unital §/4-G’-multiplicative contractive completely positive linear
map F:C(X,,) = PM,,(C(Y))P such that

[Fllpr = &lpr, (€9.461)

dist(F*(2),yori(2)) < o01/4 for all z €U’ and (€9.462)

|70 Fa) — A(7)(rny)(a))] < o2/4 for all a € H, (€9.463)

where P = P, + P, + --- Ps, [Pj] = k([g;]) and rankP;(y) > max{NK, N(dimY + 1)} for all
L

e e
y €Y, j=1,2,..5 Moreover, as in the proof of 0.9, P = Qo ® diag(Q1,Q1, ..., Q ®Q2, as
required, and
L
e N
F=UgapU,Uq,..., 0 Uy,

where ¥q : C(X,,) = QoM (C(Y))Qp is a unital §/4-G'-multiplicative contractive completely
positive linear map Wy = ¢} o h and W9 = ¢} o h, where h : C(X,,) — C(J) is a unital homo-
morphism and J is a disjoint union of finitely many intervals, wl : C(J) = Q1M (C(Y))Q1
and ¢4 : C(J) = Q2M;,(C(Y))Q2 are unital homomorphisms.

Define ® = F o V. It follows that

@]lp = Eklp, (€9.464)
dist(®*(2),v(z)) < o for all z €U and (€9.465)
|70 F(a) — A(T)(a)] < o9 for all a € H. (€9.466)

For the general case, we may write that C'(X) = US2 ,C(X,,), where each X, is a compact
subset of a finite CW complex. For any 7 > 0 and any finite subset 7 C C'(X), we may assume
that F C C(X,,) for some n; > 1 with an error within 7/2. Then, by 2.3.13 of [23], there is
an integer no > 1 and a unital n/4-multiplicative contractive completely positive linear map
V' C(X) — C(Xp,) such that

1, o W' (f) — fll < n/4 for all feF. (€9.467)

With sufficiently small 7 and large F, by considering maps from C(X,,), one sees that the
general case follows from the case that X is a compact subset of a finite CW complex.
O

Corollary 9.13. Let Q be a compact metric space and let X = Q x T. Then[912 holds for this
X. Suppose also that P = Py U B(P1), where Py, P1 C [¢n oo (K (C(Xy))) are finite subsets and
suppose that Uy, C J.(B(F2Ko(C(Q)))) NU is a finite subset such that, in addition,

K|gepy) = 0 and 7|y, = 0. (€9.468)

95



Then, one may further requite that
Py = Py @ Py1 and &g = g9 b Py, (e 9.469)

where Poo, Po,1 € My (C(Y')) are projections, ®oo(f © g) = 35— f(&)a; - hj(g) for all f € C(Q)
and g € C(T), & € Q; is a point, qo; € Mp(C(Y)) is a projection wzth Z 19,5 = Poo,
hj : C(T) = qojMm(C(Y))qo; is a homomorphism with h;(z) € Uo(qo,ij(C( ))ao,;) (5 =

2,..,8), Po1(f®g) = ijl Li(f)-9(1)q1; for all f € C(R) and g € C(T), 1 € T is a point,
q1,j € Mm(C(Y)) is a projection with 377_; q1,; = Po1, and Lj : C(Q) = q1,;Mm(C(Y))qu,; is a
unital contractive completely positive linear map.

10 The uniqueness statement and the existence theorem for
Bott map

The following is taken from 2.11 of [16].

Theorem 10.1. Let e > 0. Let A : (0,1) — (0,1) be an increasing map and let d > 0 be an
integer. There exists n > 0, v1,7v2 > 0 and a finite subset H C C(T)s.q. and an integer N > 1
satisfying the following:

Let ,7p : C(T) - C = PM,(C(Y))P be two unital homomorphisms for some connected
finite CW complex with dimY < d and rankP > N such that

|Top(g) —To gp(g)| < m for all g€ X and for all 7€ T(C), (€10.470)
dist(o*(2), ¥4 (2)) < 72, (€10.471)
Prop(ly) > A(r) for all 7€ T(C) (€10.472)

and for all open arcs I, with length r > n. Then there exists a unitary v € C' such that
lu*p(z)u — ¥(2)|| < e. (€10.473)
(Here z € C(T) is the identity map on the unit circle.)

Proof. The proof of 2.11 of [16] does not need the assumption that dimY" < 3. The main technical
lemma used in the proof was 4.47" of [I8] which is a restatement of 4.47 which stated without
assuming dimY < 3. Perhaps, a quick way to see this is to refer to the proof of Theorem 3.2
of [35] which is a modification of that of 2.11 of [16]. Again, note that Lemma 3.1 of [35] is
another restatement of 4.47" of [18] which, as mentioned above, is a restatement of 4.47 of [18].
So Lemma 3.1 of [35] holds without assuming d = dimY" < 3. However the integer L in Lemma
3.1 depends on d. There are two occasions that “since dimY < 3” appears in the proof of 3.2 of
[35]. Both cases, we can simply replace 3 by d, in the next line (i.e., replace 3kgm; by dkom;
and replace 3kol; by dkol1). Note also, since X = T, K;(C(X)) has no torsion. Therefore, we
do not need D; (j > 2) in the modification. The same simple modification of proof of 2.11 of
[16] also leads to this lemma.

O

Remark 10.2. Note that the above lemma also holds if ¢ and ¢ are assumed to be unital
0-G-multiplicative contractive completely positive linear maps, where § > 0 and finite subset
G C C(T) depend on ¢, since C(T) is weakly semi-projective.
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Corollary 10.3. Let X be a compact metric space, let F C C(X) be a finite subset, let € > 0
be a positive number and let d > 1. Let A : (0,1) — (0,1) be a nondecreasing map. Let U C
Mp(x)(C(X)) be a finite subset of unitaries which represent non-zero elements in K1(C(X)).

There exists 7 > 0, v1 > 0, 72 > 0, 6 > 0, a finite subset G C C(X) and a finite subset
P C K(C(X)), a finite subset H C C(X)s.q., a finite subset V C K1(C(X)) NP, an integer
N > 1 satisfying the following: For any finite CW complex Y with dimY < d, any projection
P e M, (C(Y)) with rankP(y) > N for all y € Y and two unital §-G-multiplicative contractive
completely positive linear maps ¢, : C(X) — C = PMp,,(C(Y))P such that

[ellp = [Y]lp, (€10.474)

Prop(Or) > A1), oy (Or) > A(r), (€10.475)
for all T € T(M,(C(Y))) and for all r > n,

|Top(g) —Tow(g)| <1 for all g € H and (€10.476)
dist({p(u)), (¥(u))) < v2 for all u € Jyaon(V), (€10.477)

there exists, for each v € U, a unitary w € Mp,(x)(C) such that

[w(e ® idpx) (V)w* = (¥ @ ingx) (V)| <e. (€10.478)
Proof. Fix v e U. Let r € (0,1). Choose a r/2-dense set {s1,s2,...,5,} in T. Let f; be in C(T)4
such that 0 < f; <1, fj(s) =1if |[s; —s| <r/5and fi(s) =0if |s; —s| >r/2,j=1,2,...,n.

Let T, = {r € T(C(X)) : u+(0;) > A(r)}. It is easy to see that T, is a compact subset of

T(C(X)) (in the weak*-topology). Let

I ={feC(X):7(f*f)=0 for all 7 €T,}.
Then I, is a closed two-sided ideal of C'(X). Put

Jr ={f € Myyx)(C(X)) : (T ® Trypx))(f*f) =0 for all 7€T,}.

Note that J, C J if 0 < v < r and it is easy to check that Nys,>oJ, = {0}. There is
1> Fy(r) > 0 such that

m(fj(v)) #0, j=1,2,...,n, (€10.479)

where 7 1 My, x)(C(X)) = Mpyx)(C(X))/Jp (r) is the quotient map. Therefore 7(f;(v)) > 0
for all 7 € T, (). Define

Ay(r) = inf{7(f;(v)) : 7 € Tr(),5 = 1,2,...,n}. (€10.480)
Since T, () is compact, A,(r) > 0. We note that
pr (1) > Ay(r) (e10.481)

for all open arcs I,.. Define Ay : (0,1) — (0,1) by A1(r) = inf{,gy) Ay. Then Ay is an increasing
map.

Now let 7; > 0 (in place of 1), 7} > 0 (in place of 1), 72 > 0, H; (in place of H) be a finite
subset and N > 1 be an integer required by [[01] for A; and e given. Also let §; > 0 (in place
of §) and Gy (in place of G) be finite subset given by for e.
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Choose 1 > 1 > 0 so that n < Fy(n1). Choose v1 = 1 /m(X) and
H ={hi; € C(X)sq: (hij) =h(v) for some heH and velU}.
Choose 6§ = 6;/m(X)? and
G ={9i;: (gij) = g(v) for some g € G and v € U}.

Choose a finite subset P C K(C(X)) so that it contains [idg(x)] € Ko(C(X)) and {[v] €
K (C(X)):veU}. Choose V =U.

Now, if 9,1 : C(X) — C = PM,,(C(Y))P are as described in the lemma, where rankP > N,
and dimY = d, which satisfy the assumption for the above chosen 7, v1,72, 6, G, H, P, V
and N, define A, : C(T) — M,,x)(C(X)) by Ao(f) = f(v) for all f € C(T). Define ¢, =
(p® ide(X)) oAy and ¥y, : (Y ® ide(X)) o Ay. Then we apply to ¢, and 1,. The lemma
follows.

[l

10.4. (Uniqueness statement for dimY < d) Let X be a compact metric space, let F C C(X)
be a finite subset and let € > 0 be a positive number. Let A : (0,1) — (0,1) be a nondecreasing
map. There exists n > 0, y1 > 0, 79 > 0, § > 0, a finite subset G C C(X) and a finite subset
P C K(C(X)), a finite subset H C C(X)s.q., a finite subsetV C K1(C(X))NP, an integer N > 1
and an integer K > 1 satisfying the following: For any finite CW complex Y with dimY < d, any
projection P € M,,(C(Y)) with rankP(y) > N for all y € Y and two unital 6-G-multiplicative
contractive completely positive linear maps ¢, : C(X) — C = PM;,(C(Y))P such that

[ellp = [Y]lP, (10.482)

NTOSD(OT’) > A(T)v NToilJ(OT’) > A(T)7 (e 10'483)

forall T € T(M,(C(Y))) and for all r > n,

|Top(g) —Tow(g)| <71 for all g € H and (e10.484)
dist({p(u)), (¥(u))) <2 for all u € Jygon(V) (€10.485)
(e 10.486)

there exists a unitary W € Mg (C') such that
W BN (YW — ()| < € for all f e F, (10.487)

where

K K

B (f) = diag(@(f), o(f), - o(f)) and YF)(f) = diag(¥(f), ¥ (f), ... ¥(f))
for all f € C(X).

We actually will use a revised version of the above statement:
10.5. The same statement [10-]) holds if is replaced by
Prop(Or) > A(r) for all T € T(PMy,(C(Y))P). (€10.488)

By the virtue of 3.4 of [30], and [I0.4] are equivalent.
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10.6. (Existence statement for dimY = d) Let X be a compact metric space with C(X) =
limy, oo (C(X}), ¥n), where X,, is a finite CW complex, let F C C(X) be a finite subset, let
e >0 and 69 > 0 be positive numbers. Let A : (0,1) — (0,1) be a nondecreasing map. For any
finite subset P C K(C(X)) and any finite subset Q C Ko(C(X)), there exists n >0, 6 > 0 and
a finite subset G C C(X), an integer ng > 1, an integer N > 1 and an integer K > 1 satisfying
the following: For any finite CW complex Y with dimY < d, any unital §-G-multiplicative
contractive completely positive linear map ¢ : C(X) — C = PMg(C(Y))P (for some integer
R > 1 and a projection P € Mp(C(X))) such that rankP(y) > max{N,NK;} for ally €Y,

Prop(Or) > A(r) (e10.489)

for all balls O, of X with radius r > n and for all T € T(C), and for any k € KK (C(Xy,) ®
C(T),C(Y)) with

max{|pc(5(B(g)))) ()| : 1 < i<k and t € T(C)} < K, (e 10.490)

where g1, g, ..., gx generates a subgroup which contains the subgroup generated by K1(C(X))NP,
[Vng.00l(gl) = gi for some g, € K1(C(Xy,)), and, for any homomorphism

[': G(Q) = U(M,(C))/CU(Mn(C(C))),

where n = max{R(B(G(Q))),d + 1} (see ZI5l) and Q C [tng,00](Ko(C(Xp,) with ko Blg =
IIc o T, there exists a unitary w € Mg (PMg(C(Y))P) such that

1™ (f),ulll < € for all f€F, (e10.491)
Bott (o) 0 ¢y 00,u) = Krkof and (€10.492)
dist(Bu(o'®), u)(z), K[(z)) < & for all z € Q. (€10.493)

The proof of holds for dimY < d under assumption that [10.4] holds for
dimY < d.

Proof. We will apply and the assumption that [[0.4] holds for all finite CW complexes Y
with dimY < d. To simplify notation, we may assume, without loss of generality, that Y is
connected.

We assume that e < dp/2. We may assume that 1o(x) € F. Let Aq(r) = A(r/3)/3 for all
r € (0,1). Let P C K(C(X)) be a finite subset. Let (¢/,G’, B(P)) be a K L-triple for C(X)®C(T).
To simplify notation, by choosing a smaller € and larger F, we may assume that (¢, 7', 3(P)) is
a K L-triple for C'(X) ® C(T), where 7' = {f ® g: f € F and g € {l¢(1), 2, 2*}}. To simplify
notation, without loss of generality, we may also assume that Q@ = Ky(C(X)) N P.

There is gy > 1 such that P C [0y o] (K (C(X,y)). Let ;1 > 0 (in place of n) be as in [0.4]
for /16 and F and Aj. It follows from 3.4 of [36] that there is finite subset Hy C C'(X)s.4. and
oo > 0 such that, for any unital positive linear maps v, : C(X) — C (for any unital stably

finite C*-algebra (),
|7(¢1(a)) — 7(2(a))| < o¢ for all a € H (e10.494)
implies that
Props (Or) > Aq(r) for all 7€ T(C) (e10.495)
and for all open balls O, of X with r > 7y, provided that

Proys, (Or) > A(r) (€10.496)
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for all open balls O, with radius r > 1;/4 and for any tracial state 7 of C.

Let n = m1/4. Let ; > 0 (in place 71) and 74 > 0 (in place v2) be as required by [[0.4] for /16
(in place of €), X, A;. Let 0 = min{~{/4,+4/4,00,00/2}. Let §; > 0 (in place of §), G; C C(X)
(in place of G) be a finite subset, P; C K(C(X)) be a finite subset, H C C(X)s.4. be a finite
subset, V C K;(C(X)) NP, be a finite subset, N; (in place of N) be an integer and K > 1 be
an integer as required by [[0.4] for €/16 (in place of €), F, A; (and for X). We may assume that
F C G Put Hy = HUHo. Let U be a finite subset U(M(C(X))) such that U = J o) (V).
Let Gy be the subgroup of K;(C(X) ® C(T)) generated by {[u ® 1] : u € U}. Let R(Gy) be as
defined in We may assume that L > max{n, R(G(U))} > dimY + 1.

Let ng (in place of n) be an integer, q1,q2, ...,qs € C(Xpn, X T) be a finite set of mutually
orthogonal projections with 1¢( Xpg XT) = Z;Zl qj which represent each connected component of
Xno X T, s1,582,...,5 (in place of g1, 92,...,9x), Go and N > 1 (in place of N) be the integer
required by @.T2 for X x T (in place of X), €/16 (in place of €), Go = G' @ {1¢(r), 2, 2"} (in place
of G), P1 ® B(P) (in place of P), H1 ® {1¢(r)} (in place of H), U @ {1¢(m)} (in place of U),
o/L (in place of o1 and o2) and integer L. We may assume that ng > n,. Note that there are
mutually orthogonal projections ¢, gy, ..., ¢5 € C(Xy,) such that ¢; = ¢; ® 1gqr), @ = 1,2, ..., 5.
We may assume that

Go = Z" & Z* & Tor(Gy), (€10.497)

where ZF1 C kerpc(x) and 7k € B(K,(C(X))). We may further write that Tor(Gp) = Goo ®
Go1, where Goo C kerpo(x) and Go1 C B(K1(C(X))). We assume that ZF' is generated by
S1,82, ..., Sk, and 72 is generated by Sky+1, Skyi+2s -5 Sky- Write sg, 4 = B(gi), where g; €
K1(C(X)),i=1,2,...,ke. Without loss of generality, to simplify notation, we may assume that
Go C [tng,00](K0(C(Xng)@C(T)), Z € [thng 00] (Ko (C(Xny))) and Z* € B([thng,00) (K1 (C(Xa,)))-
Let 51,59, ..., 5}, € Ko(C(Xng)) and gy 415 G, 425 5 Ty sk € K1(C(Xny)) such that [1n, o] (s7) =
si, i =1,2, .. k1 and [¢ny00](9)) = gis 1 = 1,2, ..., k2.

Let N = max{Nj, Na(dimY + 1)}. Let d2 > 0 and G5 C C(X) be a finite subset such that
for any unital d;-Gsz-multiplicative contractive completely positive linear map L' : C(X) — C’
(for any unital C*-algebra with T'(C") # 0),

7([L'](sj)) < 1/2N for all T € T(C"), j=1,2,..k1, (10.498)

(see 10.3 of [34]). We may assume that FUG; C G3. Let Gy ={f®g: f € G2,9 = lo(1),2, 2"}
With even smaller do, we may assume that for any unital do-G4-multiplicative contractive
completely positive linear map L” : C(X) @ C(T) — C', [L” o ¢pny,00] is well defined on
K(C(Xp) @ C(T)).

Let § = min{d;,d2} and G = FUG UG UG C C(X). Let K1 > 0 be an integer. Let Y be
a finite CW complex with dimension at most d, let ¢ : C(X) — C = PM,,(C(Y))P be a unital
d-G-multiplicative contractive completely positive linear map with rankP > max{N, NK;} and

Prop(Or) > A(r) for all 7€ T(C) (e10.499)

and for all open balls O, of X with radius r > 7, let kK € KK(C(X,,) ® C(T),C(Y)) be such
that

lpc(k o B((g:)(t)| < Ky for all t € T(C), (e10.500)
i=1,2,...,ky. Note that, by (€I0.498), since rankP > N K,

lpc(k(sh))(t)] < Ky for all t € T(C), (e10.501)
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i=1,2,..., k1. Without loss of generality, we may assume that ¢ (1, 0(q;)) = P; is a projection,
j=1,2,..,s and 35, P; = ide.
Define k1 € Homp(K(C(X,, x T)), K(C(Y)))) by

R K(C(Xn)) = 190 ¥no,c0] and Kalg((c(xay)) = Klp(c(xag)))-
Let T" be given as in the statement so that IIcoT'|g = k1 0 3|g. Define A : T(C) — T(C(X x T))
by
Ar)(f @g) = 7(e(f)) - tm(9)
for all 7 € T(C) and for all f € C(X) and g € C(T), where t,, is the tracial state of C(T)

induced by the normalized Lesbegue measure. One checks that A is compatible with ;. Fix a
splitting map Jyy, ¢y : K1(C) = U(ML(C))/CU(ML(C)) (note that L > dimY + 1), we write

U(ML(C))/CUML(C)) = AE(T(ML(C)))/pan, ) Eo(C)) © Jar, () (K1 (C)).

Let G1 = Gy +B(G(Q)). Note since K1 (C(X)®C(T)) = K1(C(X)) ® B(Ko(X)), we may write
G1 = Gy @ B(G(Q). Note also that we have assumed that

Gy C [wnO,OO](Kl (C(Xno)) ®pBo [wno,OO](KO(C(Xno)))-

To simplify notation, we may assume that G = [t/ 0] (K1(C(Xpng)) B B0 [tng,00) (Ko (C(Xn,)))-
We note that there is an injective homomorphism J, : G; — U(M(C(X)®C(T)))/CU(Mr(C(X)®
C(T))) such that ITo J. =idg, (see2I5]), where II is defined in for C(X) ® C(T). Denote

1: U(M,(C))/CU(M,(C)) = UML(C))/CU(ML(C)) the embedding given by x — 17, @ .
Define

T : J(Gy) + AfF(T(M7(C(X x T)))/ pars (c(x ) (Ko(C(X x T))) — U(M(C))/CU(ML(C))
as follows. Let I'y : G(Q) — U(ML(C))/CU(ML(C)) be defined by

I'y=1210I— JML(C) O K1 Oﬁ‘G(Q)'

Since T and k1 are compatible, the image of T'y is in Aff(T'(ML(C)))/par, ) (K1(C)). Define

L(z) = ¢f(z) for all e J(Uy), (€10.502)
I'(z) [y ((z)) for all 2 € J(B(G(Q)) and (10.503)
L(z) = A=) (10.504)

for all » € Aff(T(ML(C(X x T)))/pr,cxxT)) (Ko(C(X x T))), where

A AfF(T(ML(C(X % T))))/pary cx <y (Ko (C(X x T))) — (€10.505)
AfF(T(ML(C)))/prr, ) (Eo(C)) (€10.506)

is the map induced by A. Then [ is continuous, moreover,

K10 I 1 (g o0 ] (K1 (C(X g (1)) = L0 © Tl ([t o) (K1 (C(Xmg 2C(T))))

)\(T)(djngpo(q_j)) = T(‘Pj)7 j = 17 27 ey S
It follows from that there is d/4-G-multiplicative contractive completely positive linear
map ®: C(X) — C such that

[®otny o] = K1 (€10.507)
dist((®(2)),T(z)) < o/L for all z€U® Lo U J(B(Q)) and (e10.508)
|70 ®(a) — A(7)(a)] < o/L for all a € Hy (€10.509)
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and 7 € T(C). From (eI0.508]), we also have
dist((®(x)),I'(x)) < o for all z € Jesc(0)(B(Q)))- (e10.510)
Let ¢ = ®|¢(x). Then
[Wllp = [ellp - (e10.511)
By (€I10.509) and the choices of Hy and o, we have
Prow(Or) > Aq(r) (e10.512)
for all 7 € T'(C') and for all open balls O, with radius r > 1. We also have

|70 ¢(a) —To(a)] <~y for all a € H and (€10.513)
dist(o*(Z), 9 (Z)) < ~4 for all z € U. (e10.514)

It follows from [I0.4] that there exists a unitary W € Mg (C') such that
1oV (f) = W) (FYW]| < €/16 for all f e F. (€10.515)
Let v be a unitary in C' such that
[v—@(1er) ® 2)|| < €/4. (€10.516)

K
Take u = W*diag(v,v,...,0)W. Since we have assume that (e, F’,3(P)) is a K L-triple, this
implies that

Bott (o) o Yng00s W)|p = KK o 3. (e10.517)

Moreover, by (eI0.510]),
Bu(o) | w)(z), KT (J.(B(x))) < o < & for all z € Q. (€10.518)
O

11 The Basic Homotopy Lemma

In this section we will prove the following statement holds under assumption that holds for
all finite CW complexes with dimY < d.

11.1. (Homotopy Lemma for dimY = d) Let X be a compact metric space, let € > 0, let
F C C(X) be a finite subset and let A : (0,1) — (0,1) be a nondecreasing map. There exists
n>0,0>0,v >0, a finite subset G C C(X) and a finite subset P C K(C(X)), a finite subset
Q C kerpg(x), an integer N > 1 and an integer K > 1 satisfying the following:

Suppose that Y is a finite CW complex with dimY < d, P € M,,(C(Y)) is a projection such
that rankP > N and ¢ : C(X) — C = PM,,(C(Y))P is a unital 6-G-multiplicative contractive
completely positive linear map and u € C is a unitary such that

lle(g), ull] < o for all g€ G, (e11.519)

Bott(p, u)lp = 0, (e 11.520)
dist((Bu(p, u)(z),1) < ~ for all z € Q and (e11.521)
Prop(Or) > A(r) for all T € T(PMp(C(Y))P) (e11.522)
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and for all open balls O, of X with radius v > 1. Then there exists a continuous path {u; : t €
[0,1]} C U(Mgk(C)) such that

K
up = diag(T, 0, 1), w1 = Ly (o) (e11.523)
and ||[@")(f), w]|| < € for all f e F. (e11.524)

11.2. Let X be a compact metric space, let € > 0, let F C C(X) be a finite subset and let
A :(0,1) — (0,1) be a nondecreasing map. There exists n > 0,0 > 0, v > 0, a finite subset
G C C(X) and a finite subset P C K(C(X)), a finite subset Q C kerpc(x), and an integer
N > 1 and an integer K > 1 satisfying the following:

Suppose that Y is a finite CW complex with dimY < d, P € M,,(C(Y)) is a projection
with rankP > N and ¢ : C(X) — C = PM,,(C(Y))P is a unital 6-G-multiplicative contractive
completely positive linear map and u € C is a unitary such that

lle(e), ulll < & for all c€ g, (e11.525)
Bott(yp, u)lp = 0 and (e11.526)
dist(Bu(y, u)(z),1) < ~ for all z € Q. (e11.527)

Suppose that there exists a contractive completely positive linear map L : C(X) ® C(T) — C
such that

|IL(c®1) —p(c)|| <6, [L(c® 2z) —p(c)ul| <& for all c€ G (e11.528)
and firor,(Or) > A(r) for all 7 € T'(C) (e11.529)

and for all open balls O, of X x T with radius r > n, where z € C(T) is the identity function
on the unit circle. Then there exists a continuous path {us : t € [0,1]} C U(Mg(C)) such that

up = ) wy =1y 0 (e11.530)
and ||[p")(f), wlll < e for all f€F. (e11.531)

Proof. Note we assume that [[0.4] holds for dimY < d.
Fix 1/2 > € > 0 and F as stated in the Without loss of generality, to simplify notation,
we may assume that F is in the unit ball of C'(X). Let

F'={fog:feF and ge{l,z2"}}

Let n > 0, 1,72 > 0, 61 > 0 (in place of 9), G’ C C(X x T) (in place of G) be a finite subset,
P C K(C(X)® C(T)) (in place of P) be a finite subset, H C (C(X) ® C(T))s.q. be a finite
subset and let V C K;(C(X) ® C(T)) NPy be a finite subset, N > 1 be an integer and K > 1
be another integer required by [[0.4] (in fact by [[0.5]) for €¢/16 (in place of €), F (in place of F)
and for X @ T (in place of X).

To simplify notation, without loss of generality, we may assume that

G={fwg:fed and g€ {1,z,2"}},

where G” C C(X) is a finite subset, P; = Py @ B(P), where Py, P C K(C(X)) are finite subsets
and

H={f®g:fe€Hy and g € H1},

where 1o(x)y € Ho C C(X)sa. and 1oy € Hi C C(T)s.q. are finite subsets. We may further
assume that €¢/16 < §; and F C Gy and (261,G’,P1) is a K L-triple.
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Write C(X) = limy,—00(C(Xy), ¥ ), where each X, is a finite CW complex and v, is a unital
homomorphism. We may assume that ng > 1 is an integer such that F C 1, o(C(X,,) and
Po, P C [wNO,OO](K(C(Xno)) .

Suppose that U C U(Mg(C(X ® T))) is a finite subset such that U = J gy (V) and
R = max{R(G(V)),d}. To simplify notation further, we may assume that U = Uy LU, where

U C {u®lyy,:ueUMg(C(X))), [u] #0 in K;(C(X))}, and (e11.532)
Uy C {z:[z] € B(Ko(C(X))) and [x] #0 in K1(C(X)®C(T))}. (el1.533)

Furthermore, we may write
Gul = GOO ® Gb7

where Gy, is the subgroup generated by {[u] : u € Uy}, Goo is a finitely generated free group
such that Goo N B(kerpo(x)) = {0} and Gy, C B(kerpc(x)) is also a finitely generated subgroup.

Let Gy, be the subgroup of K;(C(X) ® C(T)) generated by {[u] : v € Up}. Let GU) =
Gy, ® Gy, . Accordingly, we may assume that

Uy = Uy U,

where U is a set of generators of J.(Goo)  and U1 is the set of generators of J.(Gy,). Put Uy, =
U11. Note that Uy, = Jc(,B(FQK()(C(X))) NU and JC(GO()) ﬂSUR(C(X))/CU(MR(C(X))) = {O}
Let Q C kerpg(x) be a finite subset such that

Q D {z € kerpo(xy : B(z) = [u], uellUn)}.

Let G, C C(X) be a finite subset such that Uy = {(zij)rxr : Zij € Gu}. Let 0 < §y =
min{e/16, 8, /16R3, 1 /16R3, v, /16 R3}. Let

dty > dt3 > 0 be a positive number and G D G” U G, be a finite subset satisfying following: If
¢ : C(X) — C"is a unital 0-G-multiplicative contractive completely positive linear map, v’ € C’
is a unitary and L' : C(X) ® C(T) is a unital contractive completely positive linear map, where
C’ is any unital C*-algebra such that [|[¢(g), v/]|| < d for all g € G,

l¥'(9) = L'(g @ 1| <0 and [|¢'(g)u’ — L'(g ® 2)|| <4

for all g € G, then [L' ot)y, ] is well defined on K (C(X,,,)®@C(T)). In particular, we also assume
that [t o 9y .00] is well defined on K(C(X,,)). Let G1 = {f®g: f € g, and g = 1,z 2*}.
Without loss of generality, we may also assume that (U')* is defined on U for any 263-Gi-
multiplicative unital contractive completely positive linear map ¥’ : C'(X)® C(T) — C’ for any
unital C*-algebra C’.

Let v = min{y;/16R3 ~2/16R3} and let L; > 1. Let n > ng be an integer, q1,q2,...,qs €
C (X, x T) be mutually orthogonal projections with loxxT) = ijl qj which represent each
connected component of X,, N > 1 be an integer and G; be a finitely generated subgroup
and Uy, be as required by for €/16 (in place of €), G, Go, P1 (in place of P), H and v (in
place of o1 and 02). We may write ¢; = ¢ ® 1o(r), where ¢} is a projection, j = 1,2,...,;s. Let
d = min{d1/2,92/2,93/2,7/4}. Let Y be a finite CW complex with dimY < d. Without loss of
generality, to simplify notation, we may assume that Y is connected. Let P € M,,(C(Y)) be a
projection with rankP > N (so rank P > max{NK', N}, if K/ = 0).

Suppose that ¢ : C(X) - C = PM,,(C(Y))P is a unital §-G-multiplicative contractive
completely positive linear map and L : C(X) ® C(T) — C is a unital 6-G;-multiplicative
contractive completely positive linear map satisfying the assumption. Without loss of generality,
we may assume that L o 1, (q;) = Pj = ¥ 0 ¢¥pnoo(q;) is a projection, j = 1,2,...,s and
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le = 375 Pj. Note, by the assumption above, [ 0 9y, o] is well defined on K(C(Xy,)) and
[L 0 ¢p 0] is well defined on K (C(Xy,,) ® C(T)).

Let H : C(X,, xT) — C defined by H(f®g) = ¢(f)-g(1)-P for all f € C'(X,) and g € C(T),
where 1 € T is a point. Denote k = [H]. Note that, by the assumption,

[L 0 tn,00] = [H]. (e11.534)
Note also that [H]|gkc(x,)) = 0- Let A : T(C) — T(C(X x T)) be defined by
AT)(g) =70 L(g) for all g€ C(X xT) (e11.535)

and for all 7 € T'(C). Note that [L]|g(xy(c(x)))np) = 0 Define

Ly J(GOV)+AR(T (MR(C(X X C(T)))))/ prg(cxxm) Ko (C(X x T))) = U(MR(C))/CU(MR(C))

by
[(z) = ¢Hz) for all z e J.(GUp)), (e11.536)
I'(z) = L*z) for all z € J.(Go), (e11.537)
I'i(z) = 1 for all 2z € J.(Gp) and (e11.538)
I'i(z) = Az) (e11.539)

for all z € Aff(T(Mg(C(X) ® C(T))))/pmpcx)zcm)) (EKo(C(X) ® C(T))), where X is induced
by A. Note that I'1|y4, = 0. It is also clear that A\(7)(g;) = 7(P}), j =1,2,...,s.

It follows from that there exist three unital J-G-multiplicative contractive completely
positive linear maps ®oo : C(X)RC(T)) — PooMm(C(Y))Poo, Po1 : C(X)RC(T) — Po1 M, (C(Y))Por
and ®q : C(X)@C(T) — Ple(C(Y))Pl with P = Pyo® FPo1 ® P, @oo(f@)g) = Zj‘:l f(fj)eo,j'
h;(g) for all f € C(X) and g € C(T), where §; € X, eg; € PooM,(C(Y))Poo, is a projection so
that 2% eo; = Poo, hy : C(T) = €0 ;M (C(Y))eo; is a unital homomorphism with h;(z) €
Uo(eo,j Min(C(Y))eo;) (1= 1,2,....8), Por(f®@g) =D 5, ¥;(f) g(1) -e1; for all f € C(X) and
g € C(T), where 1 € T is the point on the unit circle, where ¥; : C(X) — e ; M, (C(Y))er;
is a unital contractive completely positive linear map and e;; € Pyi My, (C(Y))Po is a pro-
jection so that Y75 e1; = Poi, ®1 = 91 0 ¢, where ¢g : C(X ® T) — C(J) is a 6-G-
multiplicative contractive completely positive linear map, J is a finite disjoint union of intervals,
and 11 : C(J) —» PiLM,,(C(Y))P; is a unital homomorphism, such that

[(Po® P1) 0 Ynoo] = [H], (e 11.540)
dist((®g ® ®1)*(2),T'1(2) v for all z €Y and (e11.541)

<
|70 (@@ P1)(a) — A(T)(a)] < = for all a € H and for all 7 € T(C), (e11.542)

where g = Pgo & Po1. Let 200 = Poo(1®2) = >°7_; hj(2). Since h;(2) € Uo(eo,; Mm(C(Y))eo ),
there is a continuous path of unitaries {zp ;(t) : t € [1/2,1]} C Up(eo ; Mm(C(Y'))eo,;) such that
200,5(1/2) = hj(z) and 2o (1) =eoj, j=1,2,...,s. (e11.543)
Define 200(t) = >_7_; 200,j(t) for ¢ € [0,1/2]. Then
Doo(f @ 1)z00(t) = 200(t)Poo(f ® 1) for all f e C(T) and ¢ € [1/2,1]. (e11.544)
Let zp = 1o(1 ® z). There is a unitary vy € C(J) such that

||Zo — Uo” <. (e 11.545)
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There exists a continuous path of unitaries {w(t) : t € [1/2,1]} C C(J) such that

w(1/2) =vg, w(l)=1. (e11.546)
Note that
wrpo(f) = wo(flwy for all fe C(X) and for all t € [1/2,1]. (e11.547)
On the other hand, we also have, by (eIl.534]) , (eI1.540), the assumption (eI1.527) and
(eIT.535]),
[Lllp, = [®o® Pu]lp;, (e11.548)
dist(L¥(z),T1(z)) < 2y for all 2 € and (e11.549)
|7(L(a)) — A(7)(a)] = 0 for all g€ C(X)®C(T) and 7€ T(C).  (e11.550)

With these and (eI1.529) as well as (eI11.540)), (eI1.541]) and (eI1.542]), we conclude, by apply-
ing 0.5 that there exists a unitary W € Mg (PM,,(C(Y))P) such that

1L (f @ 1) — W@ @ o)) (f @ )W|| < ¢/16 for all f € F and (e11.551)
[u = W (5 @ PE) @ o NW | < €/16 + 26 < 3¢/16, (e11.552)

There exists a continuous path of unitaries {u; : ¢ € [0,1/2]} C Mg (PM,,(C(Y))P) such that

uy = u), Uy = W*(zég) @ Péfﬂ ® véK))W and (e11.553)
[uF) — wy|| < €/2 for all t e [0,1/2]. (e11.554)

Define
up = W*(200() ) @ P @ py (w(t) FNW for all ¢ € [1/2,1]. (e11.555)

Then {u; : t € [0,1]} is a continuous path of unitaries, up = u, u; =1 and

o™ (Frue —urg ™I < 26+ 2] 0(f) ~ L(F @ 1) (¢11.556)
+ EYO(f @ Duy — u L5 (F @ 1)) (e11.557)
< 65 <3¢/8 for all feF and for all t€[0,1]. (el1.558)

0

Lemma 11.3. Let n > 64 be an integer. Let € > 0 and 1/2 > ¢; > 0. There exists 5. >0>0
and a finite subset G C D = M, satisfying the following:

Let A, A1, Aq: (0,1) — (0,1) be increasing maps. Suppose that X is a compact metric space,
F C C(X) is a finite subset, 1 >b>a >0 and 1 > ¢ > 4w/n > 0. Then there ezists a finite
subset F1 C C(X) satisfying the following:

Suppose that A is a unital C*-algebra with T(A) # 0, D C A is a C*-subalgebra with
1p =14, ¢ : C(X) — A is a unital contractive completely positive linear map and suppose that
u € U(A) such that

[z, ul|| <0 and |||z, o(f)]]| <d for all x € G and f € Fi. (e11.559)

Suppose also that

T(e(f)) = A(r) for all 7 € T(A) and (e 11.560)
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for all f € C(X) with 0 < f <1 so that {x € X : f(z) = 1} contains an open ball of X with
radius v > a, and suppose that

(/)2 g(uw)p(f)?) > ArL(r)Aa(s) for all 7€ T(A), (e 11.561)

forall f € C(X) with 0 < f <1 so that {x € X : f(x) = 1} contains an open ball of X with
radius v > b and for all g € C(T) with 0 < g <1 so that {t € T : g(t) = 1} contains an open arc
of T with length s > c. Then, there exists a unitary v € D and a continuous path of unitaries
{v(t) : t €[0,1]} C D such that

e, vl <md < e, ||[e(f), v(E)]]| <nd <e (e11.562)

for all f€F and t €0,1], (e11.563)

v(0) =1, v(l) =v and (e11.564)

o 2oV > (1 — 1y DA Y2T00) e T (e11.565)

n2
for any pair of f € C(X) with 0 < f <1 so that the set {z : f(z) = 1} contains an open ball
with radius r > (1 +1/2"Ya and g € C(T) with 0 < g < 1 so that {t € T : g(t) = 1} contains
an open arc of T with length s > 4w /n + 7/n2"* L. Moreover,

b/2)As(c/2)
on+5

A
(e () Pg(vu)p(£)?) = Ar((1 = 1/2")r)Ag((1 = 1/2"H)s) — 1 (e 11.566)
for all T € T(A), for all f € C(X) with 0 < f < 1 so that the set {x : f(x) = 1} contains an
open ball with radius v > (1 4+ 27", i = 0,1,2,....,mg — 1 and g € C(T) with 0 < g <1 s0
that {t € T : g(t) = 1} contains an open arc of T with length at least s > (1 + 1/n22"*+1)c.
Furthermore,

length({v(t)}) < . (e11.567)

Proof. Let r1 > 1y > ---1_1 > 1 and r; = b such that r; —r;411 < a/2"+1, 7=12..,01—1.
Let 0 < §p = elA(“/2)AlééZ/22)A2(c/2). Let {e;;} be a matrix unit for D and let G = {e;;}.
Define

n
v= E ezv_l]”/"ejj.

,

(e 11.568)
j=1

Let g; € C(T) with g;(t) = 1 for |t — e2V=1™/"| < 7/n and g;(t) = 0 if |t — 2V"17/7| >
m/n+m/n2" 2 and 1> g;(t) >0, j = 1,2,...,n. As in the proof Lemma 5.1 of [33], we may also
assume that

gi(e2VTlim/ng) = Gi+;(t) for all te T (e11.569)

where i,j € Z/nZ. Let 1 = ¢g > ¢1 > ¢c2 > -+ ¢y, = c so that cj — cjr1 < c/n22"+1,
j=0,1,...,m; — 1.

Define g¢; j. € C(T) with 0 < gijc < 1, gijc(t) = 1 for |t — 62\/__1j”/"32n+1| < ¢; and

Gije(t) =0if |t — VLm0 s oy 2272 i =12 my, j = 1,2,...,n32""! We may
also assume that
gi,j7c(€2\/__1kﬂ/nt) = gi7j+k/7c(t) for all t €T, (e11.570)

where k' = kn?2"+! and j, k, k' € Z/n32"T1Z.
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Let 1 = by > by > by, = b such that b; — bj11 < b/2"TL j = 0,1,....,mg — 1. Let
{x1,79,...,ox} be an a/2"*2-dense subset of X. Define f;,, € C(X) with fi,,(z) = 1 for
z € B(xi,rm) and fim(z) =0 if 2 & B(xi,ry +a/2" ) and 0 < fi,, < 1,i=1,2,..., N and
m = 1,2,...,0 + 1. Define f; ;, € C(X) with 0 < f; ;5 <1, fijp(x) =1 for x € B(z;,b;) and
fijp(@) =01if z € B(z;,b; +b/2"T1), i =1,2,..,N, j =1,2,...,mg. Note that

T(e(fim)) = A(ry,) for all 7€ T(A), i=1,2,..,N,j=1,2,...,s+ 1. (e11.571)
Fix a finite subset Fy C C(T) which at least contains

{917927 7gn} U {gi,j,c 01 S 1 S my, 1 é ] S ’I’L}

and F; C C(X) which at least contains F, {fim : 1 <i < N, 1 <m <s+1}and {fi;p:1<
i < N,1<j<mp}
Choose 9 so small that the following hold:

(1) there exists a unitary u; € e;;Ae;; such that ||e2mi”/"ei,iuei,i — || < 5(2]/16n42"+6,
i=1,2,...n

(2) lleig(u) — glu)esll < B/16m12%5, [les o £) — o feryll < 83/16n12745 for f € Fy and
ge Fo, i, 5, k=1,2,....,n;

(3) llesig(vu) — e;ig(e2V=1m/my)|| < 62 /16022716 for all g € Fy and

(4) lle; j9wei; — ejig(ules il < 05/16n727%C, |lef jo(f)ei; — ejo(f)ej il < 6/16n127+C for
all fe Frandge Fp, 4,5 =1,2,....n.

It follows from (4) that, for any ko € {1,2,...,N} and m’ € {1,2,...,1 + 1},
T(0(from)€js) = A(rm)/n — nda /1604270, (e11.572)
Fix ko,m’ and k. For each 7 € T(A), there is at least one 7 such that
7((From')€5.59: (1) > A(rpy)/n* — 63 /1604276, (e11.573)

Choose j so that k + j =i mod (n). Then, by (eIL.569),

—in/n 862
T(o(from)gr(vu)) > T(‘P(fko,m')ej,jgk(e2ﬁj / U)))—W;n% (e11.574)
i
= T(‘p(fko,m’)ej,jgi(u)) - W (e 11.575)
, 2
> Alw) 90 for all 7€ T(A), (e11.576)

n2  16ntont6
Note again 7(xy) = 7(yx) for all z,y € A. It is then easy to compute that

A((L=1/2"r) 953
n2 16n42n+5

T(p(f) P g(ou)e(f)1/?) = for all 7€ T(A) (e 11.577)

and for any pair of f € C(X) with 0 < f < 1 such that {z € X : f(x) = 1} contains an open
ball with radius 7 > a + a/2""! and g € C(T) with 0 < g < 1 such that {t € T : g(t) = 1}
contains open arc of length at least 47/n + 7 /n?2"*1. One then concludes that

A((1—1/2)r)

n2

T(p(f)g(vu)) > (1 —1/2"2) for all 7€ T(A) (e11.578)
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and for any pair of f € C(X) with 0 < f <1 such that {z € X : f(z) = 1} contains an open
ball with radius 7 > (1 + 1/2""1)a and g € C(T) with 0 < g < 1 such that {t € T : g(t) = 1}
contains open arc of length at least s > 4 /n + m/n?2" L.

On the other hand, by (2), (3) and (4) above,

T(‘P(fi,jb)1/261@71392",j',c(UU)SD(fi,jb)1/2) (e11.579)
v/ =Tk/n 3
> 1(p(fij)Perngi jr (@ M) (fi50)"?) = foors (@11580)
52
= 7(0(fij0) Perngi jron (W fijp)'?) — 16n4gn_+6 (e11.581)
(K = kn22"th) (e11.582)
Ay (bj)As(cir) 3

> — :
> - 4n T6rAgnTo (e11.583)
(e11.584)

for all 7 € T(A), k = 1,2,...,n, i = 1,2,..,N, j = 1,2,...,mg, ¢/ = 1,2,...,m; and j' =
1,...,n?2"*1 Thus

T((fij0) g0 jraw)e(fig)?) (e 11.585)

62

2 0

5

for all 7 € T'(A). It then follows
52

()P g(ou)p(f)?) = A1 (bi)As(e)) — —on T (e11.588)
for all 7 € T(A), for any f € C(X) with 0 < f < 1 so that {x € X : f(z) = 1} contains
an open ball with radius » > (1 + 1/2"*1)b; and for any g € C(T) with 0 < g < 1 so that
{t € T: g(t) = 1} contains an open arc with length s > (1 + 1/n?2" )¢, i = 1,2,...,mp and

7 =1,2,...,m1. From this, one concludes that

(o () Pgvu)e(£)/?) = Ar((1 = 1/2" 1)) Aa((1 = 1/2")s) = —is (e 11589)

for all 7 € T(A), for any f € C(X) with 0 < f <1 so that {zx € X : f(z) = 1} contains an open
ball with radius 7 > (141/2"*1)b and for any g € C(T) with 0 < g < 1so that {t € T : g(t) = 1}
contains an open arc with length s > (1 + 1/n22"+1)c.

Note that if ||[p(f), €]l < J, then

H[Qp(f)’z)\iei,i]u <nd<e

1=1

for any \; € T and f € F;. We then also require that § < €/2n. Thus, one obtains a continuous
path {v(t) : t € [0,1]} C D with length({v(¢)}) < 7 and with v(0) =1 and v(1) = v so that the

second part of (e11.562)) holds.
O

11.4. Let X be a metric space with metric dy. Define a metric d on X x T as follows:
d((.ﬁl’,t), (yar)) = \/do(l’,y)2 + ‘t - T’2
for all z,y € X and t,r € T.
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11.5. Define Agp : (0,1) — (0,1) as follows:

1
Ago(r) = et if re[dr/n+7/2n4n/(n — 1)+ 7/2(n — 1)?) and n > 645e 11.590)
1
A(r) = ETCER if r>47/63 + 7/2(63)% (e11.591)

Define Af, : (0,1) — (0,1) as follows.

[, (- 1/2%)

oo(r) = 2 ; (e11.592)
if v € [dn/k+ > w/E0H dn/(k = 1)+ ) w/(k 1)), (e11.593)
j=k j=k
k =65, ...,n; (e 11.594)
"o (1 —1/20H
Go(r) = il / ), if r>4n/64+ 7/2; (e11.595)

(64)

bo(r) = rAR(dm/n+ ) w/k*2T), i e (0,4m/n + Y w/E2Th). (e 11.596)
j=1 i=k

Let A :(0,1) — (0,1) be an increasing map. Define
r/2)Ago(r/2)
4

Lemma 11.6. Let X be a compact metric space, let € > 0, let F C C(X) be a finite subset and
let A:(0,1) — (0,1) be an increasing map. Let n € (0,1/2). Suppose that ¢ : C(X) — A is a
unital contractive completely positive linear map for some unital C*-algebra A with T(A) # ()
and u € U(A) is a unitary such that

Ap(A)(r) = Al and Aj(A) =3A0(3r/4)/4 for all r € (0,1).

T(¢(9)) = A(r) (e 11.597)

for all g € C(X) with 0 < g < 1 so that {x € X : g(x) = 1} contains an open ball with
radius r > n/2. Then there is a unitary v € My C Mg(A) and a continuous path of unitaries
{v; : t €[0,1]} C Mg such that vo =1, v1 = v and

(" (£)gout™))) = A(r/2)A00(s/2)/4 for all T € T(Mg(A)), (€11.598)

for all f € C(X) with 0 < f <1 so that {x € X : f(x) = 1} contains an open ball of radius
r > 4n/3 and for all g € C(T) with 0 < g <1 so that {t € T : g(x) = 1} contains an open arc
with length s > 5n/2, where Agg is defined in 112

Proof. Let ¢, F, A and n be as given. Choose an integer K7 > 1 such that 1/K; < n/16. Let
K = K;!/16!. We will use induction to prove the following:

Suppose that ¢ : C(X) — A is a unital contractive completely positive linear map for some
unital C*-algebra A with T'(A) # () and u € U(A) is a unitary such that

T(¢(9)) = A(r) (e 11.599)

for all g € C(X) with 0 < g <1 so that {z € X : g(x) = 1} contains an open ball with radius
r > n, Then there is a unitary v € M, 30 C My /30 (A) and a continuous path of unitaries
{ve : t €[0,1]} C My, 30 such that vg = 1, v1 = v and

(™3 (£)g(ou/32))) > ﬁ (1—1/2HA(( ﬁ (1—1/2Hr)) Al (r)  (e11.600)
k=32 k=32
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for all 7 € T'(My/301(A)), for all f € C(X) with 0 < f <1 so that {z € X : f(x) = 1} contains
an open ball of radius r > [[}_s5(1 + 1/2872)y and for all g € C(T) with 0 < g < 1 so that
{t € T : g(x) = 1} contains an open arc with length s > 4r/(n — 1) + Y} _so 7/k?251, where
Ay is defined in We use induction on n.

Let n = 64. Consider ¢(% and u(®% and D = Mgy C Mgs(A). Note that z(09d = dz(64)
for all x € A and d € D. We choose a = 1/2 and ignore b, ¢ and the last part of statement of
T3] after ”Moreover.” We also use 6 = 0. Lemma [4.4] implies that the above statement holds
for n = 64. Denote by vgy € Mgy provided by I1.3] (n = 64).

We now assume that the above statement holds for some n > 64. Denote by v,, the unitary
v € My 32 provided by the above statement for n. Let D = M, 1. We write M, 1)1/30 =
M, /32®D and consider A®M,, /64®D instead of A. Put Ay = ([Tj_g,(1=1/25F2)) A(([Tj—ga(1—
1/2F41)r) and Ag(s) = Aly(s). Choose a = 1/2, b = n/2 and ¢ = 27/n. Consider p™/3?) and

() .. Uézl/m!)u(n!/gm)

Un = vpv, 24

(in place of u). We then applying Lemma [I1.3] again. It follows that there is a unitary v,41 €
D = M, and a continuous path of unitaries {v,41(t) : t € [0,1]} C M,+1 such that v,4;(0) =
Un+1, UTL+1(1) = 17

T (g0 UPH)) > (1= AL - 120+ 1) (e10601)

for all 7 € T(M(,11)/321(A)), for all f € C(X) with 0 < f < 1 so that {z € X; f(x) = 1}
contains an open ball of radius 7 > (1 — 2"1)5/2 and for all g € C(T) with 0 < g < 1 so that
{t € T: g(x) = 1} contains an open arc of length s > 47w/(n + 1) + 7/(n + 1)2"*!, and

(MO () g (0, UTY)) (e 11.602)

> Ay((1 - 2"2)r) Ag((1 — 1/27+2)s) — Al(”/zgﬁg(”/”)) (e11.603)
n+1 n

> f[ —1/2MHA((J] @ = 1/28)mags(s) (e11.604)
k=64 k=64

for all 7 € T'(M(p41)1/321(A)), for all f € C(X) with 0 < f < 1 so that {z € X; f(z) = 1}
contains an open ball of radius 7 > (1 — 2"1)p/2 and for all g € C(T) with 0 < g < 1 so that
{t € T: g(x) = 1} contains an open arc of length s > 47 /n + 7/(n + 1)2"*1.
This proves the above statement for n + 1 and ends the induction. It follows that the lemma
follows.
O

Lemma 11.7. Let X be a compact metric space, let € > 0, let F C C(X) be a finite subset and
let A:(0,1) — (0,1) be an increasing map. Let n € (0,1/2). There exists 6 > 0, a finite subset
G C C(X) and an integer K > 1 satisfying the following: Suppose that ¢ : C(X) — A is a
unital contractive completely positive linear map for some unital C*-algebra A with T(A) # ()
and u € U(A) is a unitary such that

Ile(g), ull| <& for all g € G and 7(p(g)) > A(r) (e11.605)

forall g € C(X) with 0 < g <1 so that {x € X : g(x) = 1} contains an open ball with radius
r > n/2, Then there is a continuous path of unitaries {u; : t € [0,1]} C Mg(A) such that
up = v and vy = U and

") (f), wlll < € for all f € F, (e 11.606)
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and there exists a unital contractive completely positive linear map ® : C(X) x C(T) — Mg (A)
such that

|(f @1) — BN (f)| <€ for all feF, |[#(1®z)—U| <e and (e11.607)
tror(Or) > A1(A)(r) (e11.608)

for all 7 € T(Mg(A)) and for open balls of X @ T of radius r > 5/2n.

Proof. Let € > 0, F C C(X) be a finite subset, A : (0,1) — (0,1) be an increasing map and let
n € (0,1/2). To simplify notation, without loss of generality, we may assume that F is a subset
of the unit ball of C'(X).

Let 0 < §p < min{e/2, Ag(A)(n/8)/16}. Let F1 be a finite subset. There exists ¢/2 > § >0
and a finite subset G C C(X) containing F satisfying the following: For any unital contractive
completely positive linear map v : C'(X) — C (for any unital C*-algebra ) and any unitary
W € C with

I[t(g), W]|| <6 for all g € Gy,

there exists a unital contractive completely positive linear map L : C(X)® C(T) — C such that
IL(f @ 1) —(f)]] < dp/2 for all fe F and ||L(1® z) — W| < do/2.

Let K; > 1 be an integer such that 1/K; < n/16. Let K = K;!/32!. Suppose that ¢ and u
satisfy the assumption of the lemma for the above ¢ and G. By applying[[T.6] we obtain a unitary
v € Mg C Mg (A) and a continuous path of unitaries {u; : t € [0,1]} C Mg such that ug = 1,
u1 = v and

(") (£)gwu™)) = A(r/2) Ao (s/2)/4 for all T € T(Mg(A)), (e11.609)

for all f € C(X) with 0 < f < 1 so that {z € X : f(z) = 1} contains an open ball of radius
r > 4n/3 and for all g € C(T) with 0 < g <1 so that {t € T : g(t) = 1} contains an open arc
with length s > 5n/2.

Note that

1" (g), vuF)]|| < 6 < € for all geG. (e11.610)

It follows that there exists a unital contractive completely positive linear map ® : C(X) ®
C(T) — Mgk (A) such that

1B(f@1) — " (f) < 60/2 <e for all fe F and (e11.611)
[8(1® 2) —ou| < §/2 <e. (€11.612)

Define U = vu®). With sufficiently large F; which can be determined before choosing 6 and G,
we have

tror(Or) > A1(A)(r) for all 7€ T(Mg(A)) (e11.613)

and for all open ball O, with radius r > 2. O

The proof of I1.1] under the assumption that [10.4] ( and [10.5]) hold for finite CW
complexes Y with dimY <d

Let ¢ > 0, F C C(X) and A be given as in [I.Tl Define A’ : (0,1) — (0,1) by A'(r) =
A(15r/16). Let A1(A’) be as defined in Let 7, 61 (in place of ¢), G; (in place of G) P, Q,
N >1 and K (in place of K) be as required by II1.2] for €, F and Aq(A’).
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Let d2 > 0 (in place of 4), Go C C(X) (in place of G) be a finite subset and let Ks > 1 (in
place of K) be an integer required by 1.7 for min{e/2, 01} (in place of €), Gy U F (in place of
F), A1(A") (in place of A) and 1/16 (in place of 7).

Let 6 = min{ds,01/2,¢/4} and let G = F UGy U Go. Put K = K1 Ks!.

Now let Y be a finite CW complex with dimY < d and C = PM,,(C(Y))P for some
projection P € M,,(C(Y)) with rankP(y) > N > 1, let ¢ : C(X) — C be a unital J-G-
multiplicative contractive completely positive linear map and let u € U(C) be a unitary which
satisfy the assumption of [[T.1] for the above n, v, 6, G, P and Q. It follows from [T.7] that there
is a continuous path of unitaries {w; : t € [0,1/2]} C Mg,1(C) such that wy = u52",

1122 (g), wy]|| < min{e/2,6,} for all t€[0,1/2], g€ G UF (e11.614)

and there exists a unital contractive completely positive linear map ® : C(X)®@C(T) — Mg, (C)
such that

10(f ®1) — o520 (f)|| < min{e/2,0,} for all f e G UF, (e11.615)
[®(1 ® 2) — wy 9| < min{e/2,01} and (e11.616)
trod(Or) = A1(A")(r) for all 7 € Mg, (C) (e11.617)

and for all open balls O, with radius r > 51/32.
Then, by I1.2] there is a continuous path of unitaries {v; : t € [1/2,1]} C Mk, g,1(C) with
v1/2 = wy and v1 = 1 such that

1T (f), vi]|| < € for all t €[1/2,1], and for all f e F. (e11.618)

Now define
Y w it t e [0,1/2);
T\, if te (1/2,1).

K
Note that ug = ) = diag(, u, ...,w). This path meets the requirements.

12 The proof of the uniqueness theorem [10.4]

Proof of 10.4]

The case that Y is a single point is well known. A reference can be found in Theorem 2.10
of [36]. The case that Y is a set of finitely many points follows. The case that Y = [0, 1] has
been proved in Theorem 3.6 of [36].

We now assume that [[0.4] holds for the case that Y is any finite CW complex of dimension
no more than d > 0. We will use it to show that [[0.4] holds for the case that Y is any finite
CW complex of dimension no more than d + 1. Then induction implies that [[0.4] holds for any
integer d > 0. Note now [I1.1] and hold for Y being a finite CW complex with dimY < d.

Let € > 0 and let F C C(X) be a finite subset. To simplify notation, without loss of
generality, we may assume that F is in the unit ball of C'(X). Let n; > 0 (in place of 7),
91 > 0 (in place of 0), 79 > 0 (in place of ), G C C(X) (in place of G) be a finite subset, let
Po C K(C(X)) (in place of P) be a finite subset and Q C ker, ,, be a finite subset, let Ny
(in place of N) and an integer K (in place K) required by [I1.1] for €/32 (in place of €), F and
A(r/3)/3 (in place of A). We may assume that Q C Ko(C(X)) N Py. Let 1 = 1} /3. We may
assume that §; < €/32K7.

Write C(X) = limy,—00(C(X},), 15,), where each X, is a finite CW complex and 4, is a unital
homomorphism. Let Ky > 1 be an integer such that Kex = 0 for any x € Tor(K;(C(X))) NPy
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(1 =0,1). Let K3 = K; - Ko!. We may also assume that, for any d2-{z,1} x Go-multiplicative
contractive completely positive linear map A : C(T) ® C(X) — C (for any unital C*-algebra C'
with T'(C) # 0), [A] is well defined and

T([A((9)]) = 0

for all g € Tor(K1(C(X))) N Py. Furthermore, we may assume that d2 is so small and Ga is so
large that Bott(¢, v)|p, is well defined for any unital homomorphism ¢’ from C(X) and unitary
v in the target algebra such that ||[¢'(g), v]|| < 302 for all g € Ga. Moreover if ||[v1 — v < 3d2,
then

Bott (¢, v1)|p, = Botti (¢, v2)|p, -

We also assume that, if there are unitaries uq, us, v1, v2,v3, v4 and projections eq, es such that
lur — usl| < 302, |le1 — ezl < 3d2 ||[ei,v;]|| < 32 and ||[u;, v;]|| < 302, (e12.619)

i=1,2and j =1,2,3,4, then

bottg(e1,vj) = botto(ez,v;), bott(ui,v;) = botty(ug,v;), (e12.620)
4
botti(e1, vivauzvy) = Zbotto(el,vj) and (e12.621)
j=1
4
bottl(ul, ’U1’U2’U3U4) = Z bOttl (ul, Uj). (e 12.622)
j=1

We assume that m(X) > 1 is an integer and g; € U(M,,(x)(C(X))) so that {[g1], [92], -, [gr(x)]}
forms a set of generators for K;(C(X)) N Py. We also assume that [g;] # 0, j = 1,2, ..., k(X).
Let U = {gi, 92, ---» gr(x) }- We may also assume that m(X) > R(G(U)).

Let &1 C C(X) be a finite subset such that

U= {(ai,j) ceU: aij € 51}

We may assume that P1 = {p1,p2, .., Pro(x)} C Mp(x)(C(X)) is a finite subset of projections
such that P; = Ko(C (X)) NPy. Let Sp C C(X) be a finite subset such that

P = {(blj) : bi,j S So}

Moreover, we may assume, without loss of generality, that Q C {[p;] — [p;] : 1 < 4,5 < ko}. We
may also assume that m(X) > R(G(Py)).

Let
1

Ks(d+ 1+ m(X))?

and G, = FUG1UGyUS US;. Let 12 > 0 (in place of n), ¢’ > 0 (in place of §), G’ € C(X) (in place
of G) be a finite subset, ng > 1, No > 1 (in place of N) be an integer, K4 > 1 (in place of K) be
an integer required by [[0.6] for §/,/2 (in place of €), v0/(d+1+m(X)) (in place of dp), G,, (in place
of G), Py (in place of P) and Q. We may assume that Py C [ng,00] (K (C(Xy,))). Furthermore,
we may assume, without loss generality, that there are unitaries g; € M,,(x)(C(Xp,)) such that
Vg 00 @idn,, x, (95) = 9is @ = 1,2,..., k(X), and there are projections p; € M, (x)(C(Xn,)) such
that P, 00 ® id s, (x)(C(Xng)), = 1,2, ..., ko. Without loss of generality, we may assume that
K3| K. We may also assume that Ko = 0 for all x € Tor(K;(C(Xy,)), i =0, 1.

To simplify notation, without loss of generality, by adding more projections, we may further
assume that {p}, pj, ..., pﬁm} generates Ko(C(Xy,), and by adding more unitaries, we may assume
that {¢}, g5, ...,g,;(X)} generates K1 (C'(Xy,))-

G = (

)min{1/256, 6, /16,52/16,~o/16}
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Let §, = min{0,,,¢'/2} and G, = G,,UG’. Let d3 > 0 (in place of §) and let G4 C C(T) @ C(T)
(in place of G) be required by Lemma 10.3 of [34] for 1/4NKym(X) (in place of 0) and T x T
(in place of X). Without loss of generality, we may assume that G5 = {1® 1,1 ® 2,z ® 1}. Let

Gs={2®9:9€G,}U{1®g:9g€ Gy}

Let € > 0 (in place of §) and let G4 C C(X) (in place of G) be a finite subset required by 3.4 of
[36] for min{n1/2,12/2}, 3/4 (in place of A\;) and 1/4 (in place of Ag).

Let 6/1/ = min{1/27K3K4(d + 1+ m(X))2,(5u/K3K4(2d + 2+ m(X))2,53/2K3K4(d + 1+
m(X))4, € /2K3K4(d + 14+ m(X))?,70/16 K3K4(d + 1 +m(X))?} and let & > 0 (in place of J)
and G5 C C'(X) (in place of Fi) be a finite subset required by 2.8 of [31] for €/ (in place of €)
and G, UGy (and C(X) in place of B). Put

€1 = min{e|, €, & }.

Let n3 > 0 (in place of ), 1/4 > v > 0, 1/4 > 44 > 0 (in place of ~3), d4 > 0(in place of §),
Gs C C(X) (in place of G), H C C(X) be a finite subset, let Py C K(C(X)) (in place of P), let
N3 > 1 (in place of N) and let K5 > 1(in place of K) be required by [0 for €1 /2% (m/(X)+d+1)?
(in place of €), G, UG, UGs (in place of F), A and for dimY < d. Let n = min{n;/4,1m2/4,n3/4}.
Let § = min{61/4,5u/4, (53/4m(X)2, (54/4, (55/4}, G§=G,UG4UG5UGgUG7;UH and P = PyUPs.
Let vo < min{v5/16(d + 1+ m(X))?2,0,/9(d + 1 +m(X))?,1/256 N1 (d + 1 + m(X))?}. We may
assume that (§,G,P) is a K L-triple. Denote n = min{nz,ns}. Let N = 4(k(X) + ko(X) +
1) max{ Ny, Na, N3}. We also assume that 7 is smaller than the one required by [I0.3] for €;/4
and U. We also assume that 1,79 and § are smaller, and H, G, P, V and N are larger than
required by [[0.3] for €1 /4 and U as well as A.

Now suppose that ¢,1 : C(X) - C = PM,(C(Y))P are unital §-G-multiplicative contrac-
tive completely positive linear maps, where Y is a finite CW complex of dimension d + 1 and
rankP(y) > N for all y € Y, which satisfy the assumption for the above n, §, v; (i = 1,2), P,
V = K;(C(X) NP and H. To simplify notation, without loss of generality, we may write ¢ and
1 instead of ¢5) and 5 respectively, and we also write C' instead of M K5 (C).

Let pj 1), Dj,2) € C ® M,,(x) be a projection such that

1Pj,1) — ¢ @idn,, x, (Ps)|| < €1/16 and (e12.623)
1P;.(2) — ¥ ® idar,, 0 )| < €1/16 § = 1,2, .., ko(X). (€ 12.624)

Let g;,1), 9j,2) € C ® My, (x) be a unitary such that

195,1) — ¥ ®idnm,, ,(95)]l < €1/16 and (e12.625)
19;,2) — % ® idar, ., (9)]] < €1/16, j = 1,2, ..., k(X). (¢ 12.626)

Since pxo([pi]) = Y«o([pi]), there is a unitary Xo; € My, (x)+a+1(C) such that

Xoi(pi 0y ® 1T x5, = p2 @1dlTY ) i = 1,2, ko(X). (e12.627)

1
It follows from [[0.3] that there is a unitary X1 ; € M,,(x)(C) such that
_ X _(2
1X153;, 00X, — 301 < e1/4, (e12.628)
j=12 . k(X).
To simplify notation, without loss of generality, we may assume that Y is connected. Let

n = rank P. Let Y@ be the d-skeleton of Y. There is a compact subset Y of Y which contains
Y@ and which is a d-dimensional finite CW complex and satisfies the following:
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(1) Y\ 'Y} is a finitely many disjoint union of open d + 1-cells: Dy, Ds, ..., Dp;
(2) [1Xi5(y) — Xi; ()] < e1/16, i =1,2and j = 1,2, ..., ko(X),
(3) 125,00 W) — Py, (N < €1/16, j = 1,2, ..., ko (X), i = 1,2,
4) 1195, ®) = 35,0 (Il < €/16, j = 1,2,.... ko(X), i = 1,2,
() lle(g)(y) = e(9)(©)Il < e1/16 and

(6)

lv(g)(y) —¥(g)(€)] < €1/16 for all g € G, where £ is in one of the d + 1-cells and y is in
the boundary (in Y') of the d + 1-cell.

5
6

Denote by & € D; the center of D;, where we view D; as an open d + 1-ball. Let Y; =
YU {&,&,....&r}. Let B = n(C), where n(f) = fly,. We may write B = P'M,(C(Yy))P',
where P’ = Ply,.

By applying [0.4 for finite CW complex with dimension no more than d, for each i, there
exists a unitary w € B such that

|lwe(g)w* —(g)|ly, < e1/2%(m(X) +d+ 1)? for all g € Gs. (e12.629)

Recall, to simplify notation, that we write ¢ and 1 instead of p(55) and ¢(55) | respectively, and
we also write C' instead of Mk, (C'). Note that we have that

Prop(Or) > A(r) for all » >n and for all 7 € T(B). (e12.630)
Let W =w® ide(X). Then
|ng,(1)7X17j’*YdW]” < 61/4, j= 1,2,...,k(X). (e 12.631)

So bott1(<,0®ide(X)(gj) Xi,4l3, W) is well defined. Let o : K1(C(Xp,)) — Ko(B) be defined by
a1(g;) = bott1 (e @idar, « (95), X143, W), j = 1,2,....k(X). Let B = Bly; and let ' : B — B’
be the quotient map induced by the restriction. Let Y; be the boundary of D; in Yy, ¢ = 1,2, ..., R.
Let B; = Cly;, and m; : B — B; be the surjective map induced by the restriction, i = 1,2, ..., R.
Let ay; : K1(C(Xny)) = Ko(B;) by ai; = (mi)s1 0 a1. Let B] = Clg,y and 7; : B — B} be the
quotient map, i = 1,2, ..., R. Define O/LZ- = (7})41 © a1. Note that

ay(g;) = botti((p @ idu,,x))lvs(95): X7 1y, Wly), (e12.632)
au(g;-) = bottl((<p®ide(X))(9;)]m Xilv;Wly,) and (€12.633)
ay;(g;) = botti((p @idn,, ) (95)(&), X7 ;&)W (&) (e12.634)

j=1,2,..,k(X) and i = 1,2,..., R. Note that, by (eI2.631]), 10.3 of [34] (in the connection of
2.8 of [31]) and by the choice of d3, €] and G!,, we have

lpB(a1(gi))(T)] < 1/4AN2Kym (X)), |ppr (04 (g;))(7)] < 1/4N2 Kym(X), (€12.635)
P, (a1,i(g;))(7)] < 1/4N2 Kym(X) and |pp; (o ;([g5]))(7)] < 1/AN2Kqm(X), (e12.636)

j=1,2,.. k(X)andi=1,2,..,R, and for all T € T(B), 7 € T(B'), 7 € T(B;) and 7 € T'(B)),
respectively.

Denote by qo; = pj,1) ® id(gﬂ) and q67j = Dj,2) ® idgl+1), j=1,2,...ko(X). Let W =
w @ idM,, ) apr = wldt1+m(X)) ¢ M (x)+d+1(B). Then we have

W qo.ily,W* — qé,j|yd|| < (m(X) + d)?e; /4 < min{6, /8, ~o/64}. (€12.637)
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There is a unitary ©; € M, x)+q(B) such that
10; — 1] < 8u/4 and (6;W)qo,ily,(0:W)" = d) v, (€12.638)

i=1,2,..., ko(X).
Define

zj = (idar,, xysai (B) — D01lv,) @ X5 ilva(0iW)qoaly,, 7=1,2,....ko(X).
It follows that

botto(e, Xg v, W)([ps]) = 2], (e12.639)
G =1,2, ., ko(X).
We obtain a homomorphism ag : Ko(C(Xy,)) = K1(B) by ao([p)]) = [25], 5 = 1,2, ..., ko (X).
Let afy = (1')40 © . Let ap; = ()40 © a9 and aa’i = (7))« 0 g, © = 1,2, ..., R. Note that

ap([Pj]) = [zilv], a0u([pi]) = [zlv] and g, ([pf]) = [2(&)] (e 12.640)
J=1,2,....ko(X) and i = 1,2, ..., R. Let G1 = [thng.00) (Ko(C(Xn,)))-
Define T': Gy — U(M m(X )+d+1( )/ CU(Mu(x)1ar1(B)) by T([pj]) = 2, j = 1,2, ... ko (X).
Define I' : Gy — U(M (X )+d+1( ))/CU( m(X )+d+1(B )) by F/([ ) = Z*‘y/ j=12. .,kQ(X).
Define I'; : G; — U(M (X )+d+1( ))/CU( m(X)+d+1(B )) by I'; = 7T oI and F/ G, —

U(M(x)+d+1(B;))/CU (M x)4a41(Bj )) by I, = (7)) oT and i = 1,2, ..., R. Note that T, I,
I'; and I, are compatible with —ag, —a, —ap,; and —oz{w respectively. We note that

U'([pj]) = 2flvs» Tillps]) = 21y, and Ti([ps]) = 25 (&), (€12.641)

j=1,2, . k(X)andi=12,.,R.

By the Universal Coefficient Theorem, thereis o € KK (C(X,,),
a;, i = 0,1. It follows (using (eI12.635])) from [I0.6] (for dle <
U € Mg, (B) such that

[eE(g), U]l < 6u/2 for all g€ Gu, (e12.642)
Bott (o5 0 ) 00, U) = —Kja and (€12.643)
dist(Bu(p, U)(x), K4I'(z)) < 70/64(d+ 14+ m(X)) for all z€ Q. (e12.644)

B) such that O‘|Ki(C(XnO)) =
d) that there is a unitary

Denote by Z;; = (m(gj,(l)))(K‘*), i =1,2,..,R and j = 1,2,....k(X). In the following
computation, we will identify U(&;), W (&), X1,;(&) and Z; (&) with constant unitaries in
M,y (x)(B'), when it makes sense. We also will use (2) and (4) above, as well as (eI2.620)-
(e12622)) in the following computation. We have

bott ((r; 0 ) <0, (<W<@-><K4 UE) WL UIv)) 9)

(Z; (W (&) X151y, X143, Wy KUy,

. botﬁ(zw,U<sz>*<w<sz>*xz,y<sz>xz|YW|Y> () U|y>
(Zi (W (&)

k3

) &
—|—bott1(Zw,(X* ly; Wy, ) ED) + botty (Zi 4, Uly;)
= botti(Z;(&), U(&)") + bott1(Zi (&), (W (&) X (&) ED)
+Kja1,(g;) — Kaoui(g;)

( )
( )
( )
i ( )
— botta(Ze,(6), U(6) (W (¢ > Xy (6)) ) (¢12.649)
( )
( )
( )
= K40/1,i(9;')—K40/1,i(9§):0- ( )
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Similarly, (put Qo ; = 90,5

(K4))

botto((m; 0 ) FV, (W (&) KU (&) WIED ULy, ) ([pj])

= botto(Qo v, U&) (W (&) Wly,) KV |y,)
= botto(Qo,lv,, U (&) (W (&) Xolv, X5 1v; Wy, KU y,)
= botto(Qo;lv;, U (&) (W (&) X0, (&) X5 1v; Wy ) KUy,
= botto(Qolv,, U(&)" (W (&)* Xo,;(&)) ")

+botto(Qo;ly;. (X§ ;v Wly,) F9Uy,)
= botto(Qo,lv,, U(£1)") + botto(Qoly;, (W (&)* Xo,5(&)) ")
+botto(Qoyly;» (X3 ;1v: W1y, ) ") + botto(Qoylv;. Uly;)
= botto(Qo;(&), U(&1)*) + botto(Qo(&), (W (&) Xo,;(&:)) ")
+Kaa0,5([pj]) — Ko ;([p)])
= Kuog;([P}]) — Kacg ;([pj]) = 0.

Since K4z = 0 for all z € Tor(K;(C(Xy,)), i = 0,1, we have

i=1,2,...

i=1,2,...

Bott ((1; © ¢ © Pg,00) K8, (W(E) EDU (&) WIS VUy,) = 0,

, R. Tt follows that

Bott((m; 0 o) K0, (W (&) KU (&) WIS Uy,)lp, = 0,

R

We also estimate on Y;, using (€12.629), (e12.642]) and (4),

I[r 0 0 (g), (W (&) FVU (&) WIEDU ]|
< 61/4+(5u/2+61/4+61/4+61/4+61/4+5u/2 <

for all g € G,,.
For each i, there is Z; € U(Mp,(B)) such that

Denote

HE]' — 1” < 5u/2 and EjUQ(),jU*E; = Q(),j, j= 1,2,...,k0(X).

Pij=(1-Qo,)ly; and Q;; = Qoly;-

e12.654
e12.655
e12.656
e12.657
e12.658
e12.659
€12.660
e12.661

e12.662
e12.663
e12.664

o~ o~ o~ o~ o~ o~ o~ o~ o~~~
~— — Y Y~ Y ~— ~—

(e 12.665)

(e 12.666)

(e 12.667)
(e12.668)

(e 12.669)

j = 1,2, ko(X) and i = 1,2,..., R. By identifying (Z;U)(&), (OW)(&) and X, ;(&;) with
constant unitaries on Y;, by (3) and (4) above, there is a unitary =; ; € Mg, (B;) such that

IEig — 1 < e1/4 and [[Qu, Eij(E5U) (&) (W (£))*Oily; Wy ) " (E;U)Iv; ]|l = 0,

i=12,..,ko(X) and i = 1,2,..., R. Similarly, there is a unitary =} ; € Mk, (B;) such that

i=1,2,..

Jko(X) and i =1,2,..., R. Set

Pi,,j = (1—Qo,;)(&) and Qé,j = Qo,j(&)
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as constant projections. Define
Qj = Pj+Qi(X5,0W)EVZU))y, and (e12.670)
Q= Pyt QiEU)E) (O (&))" Xo(&:)) " (e 12.671)
Then (see also (3) above)
19, = (Poj + QiyZi (E0) (&) (O:W (&))" Xo,3(€) FVEL | < en/2 (€12.672)
Thus, from above,

197,325 — (Pij + Qi jZii (F5U) (&) (O:W (£))) 0 (@:W |y ) Y (EU) v, || < e1 (e 12.673)
We also have (see 215 and 2.21)), by (e12.644]),

dist (Bu((m; 0 )59, (W (&) FIU (&) WIS Uy, ) ([ps1), 1) (€12.674)
< dist(P;; + Qi (EiU) (&) ((©:W (&) @z’IYiVVly) D(E0)ly;, 1) + 20, (e12.675)
< dlst(Q Qg 1) +ex + 20, (€12.676)
< dlst(Q’ 1) + dist(Q,5, 1) + €1 + 26, (€12.677)
= dist((P;,j + Qi (Z:U) (&) (©:W (&) Xo,;(&:)) K, 1) (e12.678)
+dist((P; + Qi (X5 Oilyi Wiy ) KD (EU)y;, 1) + €1 + 20y (e12.679)

= dist((P,j + Qi (©:W (&) Xo,j (&) K, (Pij + Qi3 (E:U)(&)) (e12.680)
+dist((P;; + Qi,j(Xg,j@ian\n)(K@, (Pij+ Qi;(ZiU)*|y;) + €1 + 26, (e12.681)

= dist((2] (&) 5, (Pj + Qi (ZiU)(&)) (e 12.682)
—I—dlst(zj§/i D (P + Qi (EiU) ]y + €1 + 26, (e12.683)
<70/64(d + 1+ m(X)) +7/64(d + 1+ m(X) + e + 20, (e12.684)
<~o/(d+1+m(X)), j=1,2,...k(X) and i=1,2,..,R. (e12.685)

Now we are ready to apply [Tl (for dimY < d) using (eT12:666), (e T2Z.674)- (e 12.635]), (e 12.667)
and (eI12.630). By M1l there is a continuous path of unitaries {V;(¢) : t € [0,1]} C Mk, k,(B:)
such that

V;(0) = (W(&) P Dy (&) Fyw Faka |y o]y v (1) = 1, (e 12.686)
and ||[(m; 0 @) FED (), Vi()]|| < €/32 for all t € [0,1] and f € F, (e12.687)

i=1,2,...R.
Define u € Mg, k,(C) (in fact it should be in Mg, k,x,(C) but we replace Mg, (C) by C
early on) as follows: u(y) = W (y)F1KIUTED (y) for y € Y. Note that D; is homeomorphic to
the d 4+ 1-dimensional open ball of radius 1. Each point of D; is identified by a pair (z,t), where

z is on OD; = S the boundary of D; and t is distance from the point to the center &;. Let
fi : 0D; — Y; be the continuous map given by Y. Now define (note that Vj(t) € Mk, k,(B;))

ui(z,t) = W (&) K KDY () EDV (1 — 1) (fi(x)) (e12.688)

Note that u(z, 1) = WEED(f(2)) UED (fi(z)) for & € dD; and uy(x, 0) = W (&) K KDy () (K1),
Define u on D; as u;(x,t). Then u € Mg, x,(C), uly, = (WEEIGED)y Tet K = K1 Ky We
have

up B (Fru— ) (f)lly, = [WETEDLE ()0 ED ) E) —pE)(F)]y, (e12.689)
< 8u/2+ [WELE (W) — (1) y,, (e12.690)
< 0y/24 € /4 <€ for all feF. (e12.691)
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Moreover, for y € D; and any y' € Y;, by applying (5) and (6) and by applying (eI2.688]) and
(eT2.687), we have

lu(y)e ™ (F)@)u(y) = " (H W)l (€12.692)
< lu()e" () ) (y) = D)) + 3er /4 (€12.693)

< W (&) U E) S () () (U (€)W ()) ) = w (€I (e12.694)
+e/32+ 36 /4 (e 12.695)

< W (&) QTN YW (&) )E) = U (F)(&)I| + 6u/2 + €/32 + Ber /4 (e 12.696)

< IW (&) B ()€ (W (€:))E) — 6 (£) (&)l (e 12.697)
+e1/440,/2 + €/32 4+ 3€1 /4 (€12.698)

< W (&) (F) (€)W (&) ) ) =T () (&)l (€12.699)
+e1/4+0u/24+¢€/324 € (12.700)
<e/4+0,/24¢€/32+5e1/4<e for all feF. (e12.701)

It follows that

ue ) (Flu* — ()| < e for all fe F. (e12.702)

13 The reduction

Theorem 13.1. The statement of I0.4l holds for all those compact subsets Y of a finite CW
complex with dimension no more than d, where d is a non-negative integers.

Proof. Let € > 0 and F C C(X) be a finite subset is given. Let A;(r) = A(r/3)/3 for all
r € (0,1). Let n; > 0 (in place of 1), 61 > 0 (in place of d) 7] > 0 (in place of 71), 7v5 > 0 (in
place of v2), G C C(X) be a finite subset, P C K(C(X)) be a finite subset, H C C(X)s.4. be
a finite subset, ¥V C K1(C(X)) NP, N > 1 be an integer and K > 1 be an integer required by
Q.4 for €, F, Ay and d.

Let n = m1/3, 6 = 61/2, 11 = 71/2. Suppose that ¢, ¥ and C = PM,,(C(Y))P satisfy the
assumption for the above n, 8, v1, v2, G, P, H, V, N and K.

Suppose that C' = lim;,—, 0 (Chp, ¥y,), where C,, = P, M,,(C(Y,))P,, where Y, is a finite CW
complex of dimension no more than d. Let § > dy > 0 and Gy C C be a finite subset. It follows
from that there exists an integer n > 1, a unital contractive completely positive linear map
r: C'— (), and unital contractive completely positive linear maps ®, ¥ : C'(X) — C,, such that
b=rop, V=roq,

[¥n.00 0 L(f) — @(f)|| < 6o for all feg, (e13.703)
[Ynocor(g) —gll < & for all fe Gy and (e13.704)
ttod (Or), tow(Or) > A(r/3)/3 for all t € T(Cy,) (e13.705)

for all » > 17n,/8.
By choosing small §y and large Gy, we see that we reduce the general case to the case that
Y is a finite CW complex and [[0.4] applies.
O

Theorem 13.2. Let A be a unital separable simple C*-algebra which is tracially Iy for integer
d>0. Then A® Q has tracial rank at most one.
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Proof. Let € > 0, a € A® Q4+ \ {0} and let F C A® Q be a finite subset. We may assume
that 14 € F. Note that A and A ® @ has the strict comparison for positive elements. Let
b=inf{d,(a) : 7 € T(A)}. Then b > 0.

We write Q = limy, o0 (Mp1, 1), Where 2, : My — M, 1) is a unital embedding defined
by i, (z) = x ® 1, for all x € M,,. To simplify notation, without loss of generality, we may
assume that 7 C A® M, for some integer n > 1. Denote Ag = A® M,,1. Since Ag is tracially Zy,
there is a projection ey € Ay and a unital C*-subalgebra By = EM,,(C(X))E with 15, = eo,
where X is a compact subset of a finite CW complex with dimension at most d, rg > 1 is an
integer and E € M,,(C(X)) such that

lleox — zeo|| < €/8 for all z € F, (e13.706)
dist(epzep, Bg) < ¢/8 for all x € F and (e13.707)
T(1—e9) < b/8 for all 7 € T(Ap). (e13.708)

We may assume that E(x) # 0 for all z € X. Let F; C By be a finite subset such that
dist(epzep, F1) < €¢/8 for all z € F. (e13.709)

We may assume that 1p, € F;. We may assume that X is an infinite set (in fact, if By can
always be chosen to finite dimensional, then A is an AF algebra). To simplify notation, without
loss of generality, we may assume that F and 7 are in the unit ball.

Put A; = egApeg. Let o/ : By — Aj be the unital embedding. By 5] there is v’ > 1, a
projection E’ € M,/(By) and W' € M,.(By) such that E'M,(By)E" = M, (C(X)) = C(X) ®
My, for some ky > 1 and (W')*1p, W' < E'. Let E = (W')E'(W')*. Then EM,/(By)E =
C(X)® My, and eg = 1, € EM,/(By)E. Let Ay = E((egAeg) ® M,/ )E. Let e € EM,(By)E be
a projection which may be identified with 1¢(x) ®e € C(X)® My,, where ¢’ € My, is a minimum
rank one projection. We also identify e with the projection in Ay. Put By = eM, (By)e. Note
that By = C(X). We will identify B; with C'(X) when it is convenient. Denote by ¢ : By — eAze
be the embedding. Denote A3 = eAge. We will identify EM,(By)E with My, (B1) and My, (eAe)
with Ag. There exists a nondecreasing map A : (0,1) — (0,1) such that

pro(Or) > A(r) for all 7€ T(As) (e13.710)

and for all open balls O, with radius r > 0. It follows from [Tl that Ag is also tracially Z,. There
exists a finite subset /5 in the unit ball of By such that

{(aij)koxko € Myo(B1) = aij € Fo} D F (e13.711)

(Here, again, we identify EM, (By)E with My, (B1)).

Define Ay(r) = A(r/3)/3 for all r € (0,1). Let n > 0, 71,72 > 0, G C B; be a finite subset,
P C K(Bj) be a finite subset, H C (B1)s.4. be a finite subset, V C K;(B1)NP be a finite subset,
N > and K > 1 be integers required by [3.1] for €/2%(r)? (in place of €), F5 (in place of F) and
Ay (in place of A). Let U € U(M,(B1)) be a finite subset (for some integer > 1) such that
the image of U in K;(By) is V.

Let {X,,} be a decreasing sequence finite CW complexes such that X = N>, X,, and let
sp @ C(Xy,) = C(Xy41) be the map defined by s,(f) = flx,,, for f € C(X). Write By =
limy, 00 (C(Xy), sn). Choose an integer L; > 1 such that 1/L; < b/8. Let n; > 1 (in place
of n) be an integer, ¢i,q2,...,qs € C(X,,) be mutually orthogonal projections g1, g2, .., g,
Go C Ko(C(X)), N > 1 be an integer and G; C U(M;(By1))/CU(M;(By)) (for some integer
[ > 1) a finite subset with & C G be as required by for ¢/28(r")? (in place of €), y1/4 (in
place of 01), v2/4 (in place 02), G, P, H, U, and L;. We may assume that r = [ without loss of
generality (by choosing the larger among them).
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Choose 61 > 0 and a finite subset G; C Bj such that, for any §;-G;-multiplicative contrac-
tive completely positive linear map L from By, [L o sy, o0 is well defined on K(C(X,,)). Let
41, qb, --q), € Ko(C(Xy,)) such that (sp,.00)40(9)) = gi, i = 1,2,...,k. We may also assume, by
applying 10.3 of [34], that

lpcr (L © sy .00)(90))(T)] < 1/2N for all T € T(C'), (e13.712)

i=1,2,...,k, for any §1-G1-multiplicative contractive completely positive linear map L : By —
C'’ for any unital C*-algebra C’ with T'(C") # ). By choosing smaller ¢, and larger G;, we may
also assume that [L] induces a well-defined homomorphism A’ on G;. Furthermore, we may
assume that

[L 0 $ny,00](€) = TI(A(9)) (e13.713)

for all g € Gy and § € K;(Cy,) such that g = (sp;,00)+0(&), provided L is a §;-G;-multiplicative
contractive completely positive linear map.

Choose a set F3 C Bj of (2N + 1)(d + 1) mutually orthogonal positive elements. Since A
is simple and unital, there are zf1,Zf2,..., s r(n) € A3 such that

f(n)
> @} fap;=e forall feFy. (e13.714)
j=1

Let No = {max{f(n) : f € Fs}max{|lzs;|: f € F3, 1<j < f(n)}. Let 2 = min{/2,61/2,¢/25(r")?}
and let Go = FoUGU F3UGy.

Since Agz is tracially Z,, applying [6.9] there is a projection e; € Ag, a unital C*-subalgebra
C = PMg(C(Y))P € Z; with 1¢ = e; such that

lleix — zep|| < &y for all z € Gy, (e13.715)
dist(ejze;,C) < 01 for all z € Gy, (e13.716)
T(lag —e1) < b/8 for all T € T(Ajs), (e13.717)

and there exists a unital d;-Gi-multiplicative contractive completely positive linear map & :
B; — C such that

|®(z) — e1xer]] < &1 for all x € G; and (e13.718)
trow(Or) > Aq(r) for all 7€ T(e1Aseq) (e13.719)

for all open balls O, with radius r > 7. We may also assume that there is a projection E©) e
Mi, (e1 Aser) such that EO < ¢y and

lleo(er ® 1ag,, Jeo — Q|| < ¢/28 (e13.720)
(Note that eg = 1p, € EM,/(B1)E = M, (C(X))). Note also we identify (e; ® 1, ) with a
projection E' < F in As.
We also have, for 2 € Fy, by (eI3.711)) and above,

IEQz —2EO| < /27 + |leo(er ® 1ag, Jeor — veo(er @ 1ag, Jeol|  (e13.721)
= ¢/27 4 |leg(e; ® Lay, )z — z(er ® 1, Jeol| (e13.722)
< €/27 + (ko)?01 < 3¢/28 (e13.723)
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Similarly,
IEQ2EC — (® @idar, )(@)| < €/2° for all z € Fi. (e13.724)

Since G D F3, we conclude that, for each y € Y, rankP(y) > 2N (d +1). Let k£ = [P 0 55, o). It
follows from the above construction, by @12} that there is a unital ¢/28(r")2-G-multiplicative
contractive completely positive linear map ¥ : By — C, mutually orthogonal projections

Qo, @1, ...,QL,, Qr,+1 such that Qo, @1, ..., Qr, are mutually equivalent, P = Zszll Q;,

(Vo sm o] = [®0oSn 00l (e13.725)
dist(U*(x), L*(z)) < #1/2 for all z €U and (e13.726)
|[ToW(a) —To®(a)] < 72 for all a € H and for all 7€ T(C), (€13.727)

Ly
and V=VYgpV, oV PV PYUsy, where Uy : By = QoCQo, Y1 = Y1 0 g, 97 : C(J) —
Q10Q is a unital homomorphism, ¢q : By — C(J) is a unital ¢/28(r")2-G-multiplicative con-
tractive completely positive linear map ®o = 19 0 @q, 12 : C(J) = Qr,+1CQr,+1 is a unital
homomorphism, and where J is a finite disjoint union of intervals.
It follows from [I[3.1] that there is an integer K > 1 and a unitary U € A3 ® Mk such that

(U (H)U =0 ()|| < e/22(")? for all f e Fo. (e13.728)

Choose nj > 1 such that K|n}. Note that e;Age; C e1dsze; @ Mg @ My ny - With that,
we may write @) (f) = ®(f) @ 1pr, and $E)(f) = U(f) @ 1py,.. It follows that (working in
Ay ® Mg)

(@ @idar,, ) (2) @ L, — U(¥ @idag )(x) @ 1ag ) U] < /28 for all z € Fy, (e13.729)
where U = U ® 1Mk0' Put

L1 Ly
Cr=Wr By @ B ) (C(J) and ¥V =T, &0, & - & U, 6Ty, (e13.730)

There is a projection E() € My, (C}) such that

(¥ @ idag, )(15,) — BV < €/2". (e13.731)
Put Fy = U(EW ® 1, )U*. Thus, by @I3.729) and (eI3.720),
[(E® @ 1ps, ) By — Es|| < 3¢/28. (e13.732)

There is a projection F3 < (E©®) ® 1,,) and
|E3 — Eo|| < 3¢/2. (e13.733)

It follows that there is a unitary Uy € My, (e1Ase1 @ M) = E' Ao E' @ Mg with ||U; —1]| < 3¢/27
such that U EyUy = E3. Put W = U*U;. Let

Cop = WH(EW @ Ly, ) (Migy (C1) © Mg)(EW © Ly, )W.
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Since B3 € My, (C1) ® Mg, Cy € ZM). We estimate that, for z € Fi, by identifying = with
r® 1MK7

|Esz — 2B3|| < ||Eyx — xEs| + 3¢/2° (e13.734)
= ||Ea(E @ 1y, )x — 2(E' @ 1) Es|| + 3¢/2° (e13.735)
< ||Ex(E'zE @ 1p1,) — (B'2E @ 1y, ) Fa| 4 €/27 + 3¢/2° (e13.736)
< || Bo(® @idas ) (@) — (@ @ idag, ) (2) Bl + 2(ko)201 + 5¢/2°  (e13.737)
< EAU((Y ®@ida,)(2) — (¥ @idag, ) (2)U* Ea| + 2¢/2° 4 6¢/2° (e 13.738)
< 8¢/2% =¢/23. (€13.739)

Similarly, for x € Fi,
| B3z B3 — (V' @idg,) () @ 1oz, || (e13.740)
< 3¢/2% + || By By — Faeyxey Bs|| + (e13.741)
| Eserzer By — W*(V ® idg, ) (x) @ L )W (e13.742)
< 3¢/2% + (ko)%6y (e13.743)
[ E2(® @ idag, ) (%) @ Lage ) B2 — W (V' @ idk, ) () @ Lar )W (e13.744)
< Te/2% 4 6¢/27 (e13.745)
+[| B2 (® @ idar, ) (#) © 1age ) B2 — U((W' @ idg, ) (2) @ 1ar )U*| (e13.746)
< 19¢/20 4 ¢/25 (e 13.747)
+ Eo[(® ®@idag, ) () @ Lage — U((¥ @idg, ) (2) © 1ar )U*)Ea (e13.748)
< 20¢/2° +¢/2° = 24¢/2% = 3¢/23. (e 13.749)

Therefore

dist(Es3xE3, Cy) < 3¢/2% for all 2 € Fy. (e 13.750)

Note that F5 < E© @ 11y - It follows that E3 ® 1y, < eg ® 1ar,. Note that we identify x with
@17, . So It follows that, for all y € F, Es(y® 1, ) Es = E3(eo®@1a, ) (y@1ar. ) (e0@1ps, ) Es,

dist(E3(y ® 1ar, ) F3, Ca) < 3¢/23 +2¢/8 < e. (e13.751)

Since F C Ag C Ag®@ Mk @ My, 1/niic, Co C Ag @ Mg @ My, 1 C A. One may write (e 13.751])
as

dist(E3yEs,Cy) < € for all x € F (e13.752)
and by (eI13.734)-(eI3.739), one may write that
| Esy — yBs|| < €/8+¢€/23 +¢/8 < € for all y e F. (e13.753)

By identify eg with ey ® 1ps, in A, we also have, by the choice of L1, that
7((1 —ep) + (eg — E3)) < b/8+b/8 =b/4 for all T € T(A). (e13.754)
Thus
max{7(1 — E3): 7 € T(A)} <b=inf{d.(a) : T € T(A)}. (e13.755)
It follows from [G.5] that
1—FE3<a. (e13.756)

Therefore, from (eI3.753)), (e13.752) and (eI37756]), A has tracial rank at most one.
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Theorem 13.3. Let A be a unital separable simple C*-algebra which is tracially Iy for some
integer d > 0. Suppose that A satisfies the UCT. Then A has tracial rank at most one and is
isomorphic to a unital simple AH-algebra with no dimension growth.

Proof. Tt follows that A is rationally tracial rank at most one. It follows from that
Ky (A) is weakly unperforated Riezs group. Moreover, by [6.4], the map from T'(A) to S1(Ko(A))
maps the 0.(T(A)) onto 0.(Ky(A)). Thus, by [56], there is a unital simple AH-algebra C with
no dimension growth has the same Elliott invariant as that of A. Since A is assumed to satisfy
the UCT, by the classification theorem in [35], A® Z = C. But, by[84] A is Z-stable. Therefore

A = C. This proves, in particular, A has tracial rank at most one. O
Proof of Theorem
Proof. This is immediately consequence of [[3.3] O

The proof of Theorem [1.1]

Proof. This is an immediate corollary of 3.3l There is d > 0 such that A is tracially Zy. It
follows from that A has tracial rank at most one. Note that, since A is locally AH, A also
satisfies the UCT.

[l

14 Appendix

In the definition of B and B.6, we use Z(*) and 7, as model classes of C*-algebras of rank k. In
general, however, one could have more general C*-algebras as defined below.

Definition 14.1. Denote by Z; the class of C*-algebras with the form PM,(C(X))P, where X
is a compact metric space with covering dimension k, 7 > 1 and P € M, (C(X)) is a projection.

However the following proposition shows that, by replacing Z;, by Zj, one will not make any
gain.

Proposition 14.2. Let C = PM,(C(X))P € Iy. Then, for any € > 0 and any finite subset
F C C, there exists a C*-subalgebra C1 C C such that Cy € Iy, with C1 = QM,.(C(Y))Q, where
Y is a compact subset of a finite CW complex of dimension at most k, Q € M,(C(Y)) is a
projection such that

dist(a,C1) < € for all a € F and (e14.757)
inf{rank Q(y) : y € Y} = inf{rank P(z) : z € X} (e14.758)

Proof. There is a sequence of finite CW complexes {X,,} with covering dimension k such that
C(X) = limp—0o(C(Xp), ¢n), where ¢, : C(X,) — C(Xp41) is a unital homomorphism. Let
Ynoo @ C(X,) = C(X) be the unital homomorphism induced by the inductive limit system.
There is a compact subset Y,, C X, such that ¢, .(C(X,)) = C(Y;). Note that C(Y,,) C
C(Yn41) C C(X). Moreover, C(X) = U2 ,C(Y,,). Let 1, : C(Y,) — C(X) be the imbedding.
Denote by s, : X — Y, the surjective continuous map such that u,(f)(z) = f(s,(x)) for all
feC(Y,) (and z € X). Denote again by 2, the extension from M, (C(Y,,)) to M,(C(X)).
Now let 1 > ¢ > 0 and let F C PM,(C(X))P C M,(C(X)) be a finite subset. There is an
integer n > 1, a projection @ € M,(C(Y,)) and a finite subset G C QM, (C(Y;,))Q such that

|IP — Q| < ¢/2 and dist(z,G) < €/2
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for all = € F. It follows that 1, (Q) has the same rank as that of P at every point of z € X. But
for each y € Y,,, there exists # € X such that y = s, (). Therefore (€I4.758]) also holds.
O

Lemma 14.3. Let G be a group, let a,b € G and let k > 2 be an integer. Then there are 2(k—1)
commutators ci, Cg, ..., Ca—1) € G such that

2(k—1)
(ab)* = aPb( H Co(k—1)+(j—1))-
j=1
Proof. Note that
abab = ab*a(a"'b"'ab) for all a,b € G. (e14.759)
Let c; = (a='b~tab). Therefore
ab’ac; = a(ab?®)((b*)ta=1b%a)c. (e14.760)

Let co = ((b®)"'a~'b%a). Thus
abab = a?b*(cacy).

This proves the lemma for k = 2. Suppose that the lemma holds for 1,2, ...,k — 1. Then
(ab)k = ab(ak_lbk_l)(62(k_2)c2(k_2)_1 <), (e14.761)
where c1, 2, ..., Cy(—2) are commutators. As (eI4.759]),
ab(aF 1P = ab(bF 1) (aF ) (@ R (D) R 1pk =y (€14.762)
Let coh—1y—1 = (a=k=Dp=(k=1)gk=1pk=1) Further,
abfaF =t = aakTF (bR a R Dpkgk 1y, (e14.763)
Let cor—1) = (b=*a=k=Dpkgk=1) Then
(ab)* = akbk(cz(k—1)c2(k—1)—1 c . (e14.764)
This completes the induction. [l

Lemma 14.4. (1) Let A be a unital C*-algebra and letu € U(A). If1/2 > € > 0 and ||uf—v|| < €
for some integer k > 1 and v € Uy(A) U CU(A), then there exists v1 € CU(A) and uy € U(A)
such that

u—u|| <e/k and uf € CU(A).

Moreover, there are 2(k — 1) commutators cy, ca, ..., Co(k—1) Such that

2(k—1)

uf =v( [ )

J=1

(2) If A is a unital infinite dimensional simple C*-algebra with (SP), then there isu € CU(A)
such that sp(u) =T.
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Proof. For (1), there is h € A, such that
exp(ih) = uFv* and ||h| < 2arcsin(e/2). (e14.765)
Let uy = uexp(—ih/k). Then
ut e CU(A). (€14.766)

One also has that
llu —u1| < €/k.

By 4.3
U]f = VC(k—1)C2(k—1)—1"""C1
for some commutators ci, ca, ..., cy(x—1) of U(A).

For (2), let e1, €2 be two non-zero mutually orthogonal and mutually equivalent projections.
Since ej Ae; is an infinite dimensional simple C*-subalgebra, one obtains a unitary u; € e; Aey
such that sp(u;) = T. Let w € A such that w*w = e; and ww* = ey. Put z = (1—e1 —eg)+w+w*.
Then z € U(A). Define u = (1—e1—eg)+wuyw*+u;. One verifies that sp(z) = T and z € CU(A).

O

The following is known and has been used a number of times. We include here for convenience
and completeness.

Proposition 14.5. Let A be a separable unital C*-algebra and let U C U(A) be a finite subset.
Then, for any € > 0, there exists § > 0 and a finite subset G C A satisfying the following: for

any unital C*-algebra B and any §-G-multiplicative contractive completely positive linear map
L : A — B, there exists a homomorphism X\ : Gy — U(B)/CU(B) such that

dist((Lp(uw)), A(7)) < €
for all uw € U, where Gy is the subgroup generated by {u :u € U}.

Proof. Suppose that the proposition is false. Then, there is ¢y > 0, a finite subset & C U(A),
and sequence of decreasing numbers §,, > 0 with lim,, , 4, = 0 and a sequence of an increasing
finite subsets G,, C A with U2 ,G,, being dense in A, a sequence of unital C*-algebras B,, and a
sequence of §,-G,-multiplicative contractive completely positive linear maps L,, : A — B,, such
that

inf{sup dist((L,(u)), A(a) > €, (e14.767)
uel

where the infimum is taken among all homomorphisms A : Gy — U(B,)/CU(B,). Define
U:A— [0, B, by ¥(z) = {L,(z)} for all z € A. Let Q = [[72, By/ ®22, By, and let
IT: J[>2, B, — Q be the quotient map. Then IIo ¥ : A — @ is a homomorphism. Therefore
it induces a homomorphism (ILo W) : U(A)/CU(A) — U(Q)/CU(Q). Fix an integer k > 1.
Suppose z € U(Q)/CU(Q) such that z¥ = 0. There exists a unitary u, € U(Q) such that
@, = 2. There are wy,ws,...,wy € U(Q) which are commutators such that u! = H;V:1 wj.

Suppose w; = a;bjaibi, aj,b; € U(Q). There are unitaries n, a;(,), bj(n) € Bn such that

O({zn}) = uz, M({ajm}) =a; and H({bjy}) = by, (e14.768)
7 =1,2,...,N. It follows that

N
. k * *
nh_)ngo |z — H @j(n)b(n) @ () Dy | = O (e14.769)
j=1
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It follows from [I4.4] that there exists a sequence of unitaries y,, € B, such that

)0i(n) J(n H Vi(n))

where vj(,) are unitaries in B;,, which are commutators, and

”EZ

lim ||y, —zn] =0. (e14.770)

n—oo

In particular, II({y,}) = u.. Note that

{Ha ](n ](n ](n Hvz(n }GCU HB)
n=1

We have just shown that every finite subgroup of U(Q)/CU (Q) lifts to a finite subgroup of the
same order. This implies that there exists a homomorphism ~ : Gy — U([[,2, By)/CU (&5, B)
such that I oy = (Il o ¥)#|g,,. Let m, : [[°2; B, — By be the projection on the n-coordinate.
Define A\, : Gy — U(By,)/CU(By,) by A\, = o v, n = 1,2,.... There exists ng > 1, for all

n 2 ng,
dist((Ly, (w)), 7} o y(@1)) < €0/2 (e14.771)

for all w € Y. This is a contradiction.
O
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